• 1.20 MB
  • 2021-06-16 发布

江苏省南京师大附中2019-2020学年高一下学期期中考试数学试题

  • 13页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
南京师大附中2019-2020学年度第二学期 高一年级期中考试数学试卷 一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1. 直线的倾斜角是( ).‎ A. B. C. D. ‎ ‎2. 若,则( ).‎ A. B. C. D. ‎ ‎3. △ABC的内角A,B,C的对边分别为a,b,c. 已知.则边b的长为( ).‎ A. B. C. D. ‎ ‎4. 已知,均为锐角,则( ).‎ A. B. C. D. ‎ ‎5. 在△ABC中,.则△ABC的形状一定是( ).‎ A.等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形 ‎6. 过点向圆引圆的两条切线PA,PB,则弦AB的长为( ).‎ A. B. C. D. ‎ ‎7. △ABC的内角A,B,C的对边分别为a,b,c. 若满足的三角形有两个,则边长a的取值范围是( ).‎ A. B. C. D. ‎ ‎8. 直线与曲线有两个不同的交点,则实数k的取值范围是( ).‎ A. B. C. D. ‎ 二、多项选择题:本大题共4小题,每小题5分,共20分. 在每小题给出的四个选项中,有不止一项是符合题目要求的. 全部选对的得5分,选对但不全的得3分,错选或不答的得0分.‎ ‎9. 若圆与圆相切,则m的值可以是( ).‎ A. B. C. D. ‎ ‎10. 下列命题中正确的有( ).‎ A. 空间内三点确定一个平面 B. 棱柱的侧面一定是平行四边形 C. 分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上 D. 一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内 ‎11. 两直线,与x轴相交且能构成三角形,则m不能取到的值有( ).‎ A. B. C. D. ‎ ‎12. 已知圆上存在两个点到点的距离为,则m的可能的值为( ).‎ A. B. C. D. ‎ 三、填空题:本大题共4小题,每小题5分,共20分. ‎ ‎13. 已知直线和,直线m分别与交于A,B两点,则线段AB长度的最小值为 .‎ ‎14. 函数的最大值为 .‎ ‎15. 已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是 , .‎ ‎16. 在平面直角坐标系xOy中,过点的直线与圆交于A,B两点,且,则直线的方程为 .‎ 四、解答题:本大题共6小题,共70分. ‎ ‎17. (本小题满分10分)‎ 在△ABC中,角A,B,C所对的边分别为a,b,c,且.‎ ‎(1)求的值;‎ ‎(2)若,△ABC的面积为,求边长b的值.‎ ‎18. (本小题满分10分)‎ ‎(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形:‎ ‎ ①直线在平面内;‎ ‎ ②直线不在平面内;‎ ‎ ③直线与平面交于点;‎ ‎ ④直线不经过点.‎ ‎(2)如图,在长方体中,为棱的中点,为棱的三等分点,画出由三点所确定的平面与平面的交线.(保留作图痕迹)‎ ‎19. (本小题满分12分)‎ 在平面直角坐标系xOy中,已知两直线和,定点.‎ ‎(1)若与相交于点P,求直线AP的方程;‎ ‎(2)若恰好是△ABC的角平分线BD所在的直线,是中线CM所在的直线,求△ABC的边BC所在直线的方程.‎ ‎20. (本小题满分12分)‎ ‎(1)已知,求的值;‎ ‎(2)记函数,求的值域.‎ ‎21. (本小题满分12分)‎ 为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD. 其中百米,百米,且△BCD是以D为直角顶点的等腰直角三角形. 拟修建两条小路AC,BD(路的宽度忽略不计),设,.‎ ‎(1)当时,求小路AC的长度;‎ ‎(2)当草坪ABCD的面积最大时,求此小路BD的长度.‎ ‎22. (本小题满分14分)‎ 在平面直角坐标系xOy中,已知圆心在轴上的圆经过两点和,直线的方程为.‎ ‎(1)求圆的方程;‎ ‎(2)当时,为直线上的定点,若圆上存在唯一一点满足,求定点的坐标;‎ ‎(3)设点A,B为圆上任意两个不同的点,若以AB为直径的圆与直线都没有公共点,求实数的取值范围.‎ 南京师大附中2019-2020学年度第二学期 高一年级期中考试数学试卷 · 解析 一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1. 直线的倾斜角是( ).‎ A. B. C. D. ‎ ‎【答案】B ‎【解析】‎ ‎【考点】直线的斜率与倾斜角 ‎2. 若,则( ).‎ A. B. C. D. ‎ ‎【答案】D ‎【解析】‎ ‎【考点】二倍角公式;诱导公式 ‎3. △ABC的内角A,B,C的对边分别为a,b,c. 已知.则边b的长为( ).‎ A. B. C. D. ‎ ‎【答案】D ‎【解析】在△ABC中,由余弦定理,带入数据,解得或(舍).‎ ‎【考点】余弦定理解三角形 ‎4. 已知,均为锐角,则( ).‎ A. B. C. D. ‎ ‎【答案】C ‎【解析】因为为锐角,且,所以,,于是,又为锐角,所以.‎ ‎【考点】同角三角函数关系;两角和与差的三角函数 ‎5. 在△ABC中,.则△ABC的形状一定是( ).‎ A.等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形 ‎【答案】A ‎【解析】因为,所以,即,即,‎ 于是,所以,△ABC为等腰三角形.‎ ‎【考点】两角和与差的三角函数;诱导公式 ‎6. 过点向圆引圆的两条切线PA,PB,则弦AB的长为( ).‎ A. B. C. D. ‎ ‎【答案】B ‎【解析】因为,半径,所以,‎ 由面积法可知,‎ ‎【考点】圆的切线问题;与圆有关的几何问题 ‎7. △ABC的内角A,B,C的对边分别为a,b,c. 若满足的三角形有两个,则边长a的取值范围是( ).‎ A. B. C. D. ‎ ‎【答案】C ‎【解析】如图,,垂线段,所以时,三角形有两解.‎ ‎【考点】判断三角形解的个数 ‎8. 直线与曲线有两个不同的交点,则实数k的取值范围是( ).‎ A. B. C. D. ‎ ‎【答案】B ‎【解析】曲线可化简为.于是过点(2,0)的直线与该半圆有两个交点,数形结合,解得.‎ ‎【考点】直线与圆的位置关系 二、多项选择题:本大题共4小题,每小题5分,共20分. 在每小题给出的四个选项中,有不止一项是符合题目要求的. 全部选对的得5分,选对但不全的得3分,错选或不答的得0分.‎ ‎9. 若圆与圆相切,则m的值可以是( ).‎ A. B. C. D. ‎ ‎【答案】AC ‎【解析】圆可化简为.‎ 于是,解得或.‎ ‎【考点】圆的方程;圆与圆的位置关系 ‎10. 下列命题中正确的有( ).‎ A. 空间内三点确定一个平面 B. 棱柱的侧面一定是平行四边形 C. 分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上 D. 一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内 ‎【答案】BC ‎【解析】对于A选项,要强调该三点不在同一直线上,故A错误;‎ ‎ 对于B选项,由棱柱的定义可知,其侧面一定是平行四边形,故B正确;‎ ‎ 对于C选项,可用反证法证明,故C正确;‎ ‎ 对于D选项,要强调该直线不经过给定两边的交点,故D错误.‎ ‎【考点】点、线、面的位置关系 ‎11. 两直线,与x轴相交且能构成三角形,则m不能取到的值有( ).‎ A. B. C. D. ‎ ‎【答案】ABD ‎【解析】由题知,三条直线中任意两条均有交点,且三条直线不能经过同一点. 于是:‎ ‎①;②;③.综上,且且.‎ ‎【考点】平面内两直线的位置关系 ‎12. 已知圆上存在两个点到点的距离为,则m的可能的值为( ).‎ A. B. C. D. ‎ ‎【答案】ACD ‎【解析】由题知,圆与圆相交.‎ ‎ 故,即,‎ 解得,选ACD ‎【考点】点与圆的位置关系;圆与圆的位置关系 三、填空题:本大题共4小题,每小题5分,共20分. ‎ ‎13. 已知直线和,直线m分别与交于A,B两点,则线段AB长度的最小值为 .‎ ‎【答案】‎ ‎【解析】由题知,,两直线间的距离 ‎【考点】平行线之间的距离公式 ‎14. 函数的最大值为 .‎ ‎【答案】‎ ‎【解析】,‎ 最大值 ‎【考点】三角恒等变换;辅助角公式;三角函数的图像和性质 ‎15. 已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是 , .‎ ‎【答案】;‎ ‎【解析】△BDC的面积为△ABC面积的一半,‎ ‎△ABC中,BC边上的高为,△ABC的面积为,‎ 所以△BDC的面积为.‎ ‎,‎ 解得,显然为锐角,所以 ‎【考点】三角形面积公式;正余弦定理解三角形 ‎16. 在平面直角坐标系xOy中,过点的直线与圆交于A,B两点,且,则直线的方程为 .‎ ‎【答案】 ‎ ‎【解析】由题知,点A为MB的中点,设直线,将直线带入圆的方程,结合,解得,‎ ‎【考点】直线和圆的位置关系,韦达定理 四、解答题:本大题共6小题,共70分. ‎ ‎17. (本小题满分10分)‎ 在△ABC中,角A,B,C所对的边分别为a,b,c,且.‎ ‎(1)求的值;‎ ‎(2)若,△ABC的面积为,求边长b的值.‎ ‎【答案】(1);(2). ‎ ‎【解析】(1)在△ABC中,由正弦定理,设,‎ 则,带入,化简得 ‎,因为,所以;‎ ‎ (2)由(1)可知,,,又,‎ ‎ 所以,解得.‎ 在△ABC中,由余弦定理,所以 ‎,解得.‎ ‎【考点】解三角形;三角恒等变换 ‎18. (本小题满分10分)‎ ‎(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形:‎ ‎ ①直线在平面内;‎ ‎ ②直线不在平面内;‎ ‎ ③直线与平面交于点;‎ ‎ ④直线不经过点.‎ ‎(2)如图,在长方体中,为棱的中点,为棱的三等分点,画出由三点所确定的平面与平面的交线.(保留作图痕迹)‎ ‎【答案】(1);;;;示意图如下:‎ ‎(2)如图,直线IL即为所求. ‎ ‎【考点】空间点、线、面之间的位置关系 ‎19. (本小题满分12分)‎ 在平面直角坐标系xOy中,已知两直线和,定点.‎ ‎(1)若与相交于点P,求直线AP的方程;‎ ‎(2)若恰好是△ABC的角平分线BD所在的直线,是中线CM所在的直线,求△ABC的边BC所在直线的方程.‎ ‎【答案】(1);(2). ‎ ‎【解析】(1)联立两直线,解得P(0,-1),所以直线AP的斜率k=3,AP:y=3x-1.‎ ‎ (2)设点B的坐标为,则点,所以,‎ 解得,即,所以. 由到角公式得,‎ ‎,即,解得,‎ 所以BC所在直线方程为 化简得 ‎【考点】直线方程;两直线的位置关系;到角公式 ‎20. (本小题满分12分)‎ ‎(1)已知,求的值;‎ ‎(2)记函数,求的值域.‎ ‎【答案】(1);(2). ‎ ‎【解析】(1)因为,所以 即 ,所以 ‎ (2)记,显然,所以.‎ ‎ 将两边平方,得 ‎ 故 ‎ 所以,‎ ‎ 所以的值域为 ‎【考点】同角三角函数关系式;三角函数的图像和性质 ‎21. (本小题满分12分)‎ 为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD. 其中百米,百米,且△BCD是以D为直角顶点的等腰直角三角形. 拟修建两条小路AC,BD(路的宽度忽略不计),设,.‎ ‎(1)当时,求小路AC的长度;‎ ‎(2)当草坪ABCD的面积最大时,求此小路BD的长度.‎ ‎【答案】(1)百米;(2)百米. ‎ ‎【解析】(1)当时,在△ABD中,由余弦定理得 ‎,‎ 因为为钝角,所以 在△ADC中,由余弦定理得,‎ ‎ (2)在△ABD中,由余弦定理得 所以 于是.所以,‎ 当时,S最大,此时,‎ 又因为,所以,解得 所以此时 ‎ 答:(1)百米,(2)当四边形面积最大时,小路百米.‎ ‎【考点】解三角形的应用 ‎22. (本小题满分14分)‎ 在平面直角坐标系xOy中,已知圆心在轴上的圆经过两点和,直线的方程为.‎ ‎(1)求圆的方程;‎ ‎(2)当时,为直线上的定点,若圆上存在唯一一点满足,求定点的坐标;‎ ‎(3)设点A,B为圆上任意两个不同的点,若以AB为直径的圆与直线都没有公共点,求实数的取值范围.‎ ‎【答案】(1);‎ ‎(2)或 ;‎ ‎(3).‎ ‎【解析】(1)设圆的方程为,将M,N坐标带入,得:‎ ‎ ,解得,所以圆的方程为.‎ ‎ (2)设,,则,‎ 化简得,此圆与圆C相切,所以有 ‎,解得,所以 或 ‎ (3)记以AB为直径的圆为圆M,设圆M上有一动点,‎ 设.则圆M的半径.于是 ‎,其中为的夹角,.‎ 因为,所以.‎ 故点在以为圆心,为半径的圆的内部(含边界),‎ 所以点C到直线l的距离,即,解得.‎ ‎【考点】圆与方程;阿波罗尼斯圆;隐圆问题

相关文档