• 552.50 KB
  • 2021-06-16 发布

辽宁省葫芦岛市兴城市第三高级中学2019-2020学年高二期末考试数学试卷

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
数学 注意事项:‎ ‎1、答题前在试卷、答题卡填写姓名、班级、考号等信息。‎ ‎2、请将答案正确填写在答题卡上。‎ 一、选择题(每题5分,满分60分,将答案用2B铅笔涂在答题纸上)‎ ‎1.设复数z满足(1﹣i)z=2i,则z的共轭复数=( )‎ A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i ‎2.设集合,则( )‎ A. B. C. D.‎ ‎3.向量满足:,则=‎ A.4 B.8 C.37 D.13‎ ‎4.已知,则等于( )‎ A. B. C. D.‎ ‎5.函数的大致图象为( )‎ ‎ ‎ ‎ A B C D ‎6.已知等差数列满足,且,,成等比数列,则的所有值为( )‎ A. 3 B. 4 C. 3,4 D. 3, 4, 5‎ ‎7.的值是( )‎ A. B. C. D.‎ ‎8.设奇函数在上是增函数,若,,,则 大小关系为( )‎ A. B. C. D.‎ ‎9.将函数,的图象沿轴向右平移个单位长度,得到函数的图象,若函数满足,则的值为( )‎ A. B. C. D.‎ ‎10.在中,角,,的对边分别为,,,且,的面积为,则周长的最小值为( )‎ A. 5 B. 6 C. D. 8‎ ‎11.已知函数.若g(x)存在2个零点,则a的取值范围是( )‎ A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)‎ ‎12.定义在上的函数满足,,则关于的不等式 的解集为(   )‎ A. B. C. D.‎ 二、 填空题(每空5分共20分,将答案填在答题纸上)‎ ‎13.已知,则__________.‎ ‎14.曲线在点处的切线方程为__________.‎ ‎15.已知函数的图象关于直线对称,则的值是 . ‎ ‎16.设数列为等差数列,其前n项和为,已知,,若对任意n,都有≤成立,则正整数k的值为_______.‎ 三、 解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)‎ ‎17.已知在中,角A,B,C所对的边分别为且a,b,c,且.‎ 求角A的大小;‎ 若,,求的面积.‎ ‎18.已知数列是递增的等差数列,满足,是和的等比中项.‎ ‎(1)求数列的通项公式;‎ ‎(2)设,求数列的前项和.‎ D B C P A ‎19.如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.‎ ‎(1)求证:BD⊥PC;‎ ‎(2)求点C到平面PBD的距离.‎ ‎20.已知向量,,.‎ ‎(1)求函数的最小正周期及单调递减区间;‎ ‎(2)已知当时,不等式恒成立,求实数的取值范围.‎ ‎21.在平面直角坐标系中,曲线的参数方程为(,‎ 为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线经过点,曲线的极坐标方程为.‎ ‎(1)求曲线的极坐标方程;‎ ‎(2)若,是曲线上两点,求的值.‎ ‎22、设函数f(x)=aln x+x2-bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0.‎ ‎(1)求b;‎ ‎(2)若存在x0≥1,使得f(x0)<,求a的取值范围.‎ 数学答案 1. B 2.A 3.A 4.D 5.B 6. C 7.A 8.D 9.C 10. B 11. C 12. D 13. ‎ 14. y=2x 15. 16. 10‎ ‎17.(1);(2).‎ ,可得:,‎ 由正弦定理可得:,又 ,‎ ,‎ .‎ ‎(2),,‎ ,整理可得:c=4,‎ b=8,S=.‎ ‎18.(1)(2) ‎(1)设数列的公差为,由得,‎ 由题意知,‎ 所以,‎ 解得或,‎ 因为为递增数列,所以,‎ 又因为,所以,‎ 所以.‎ ‎(2) ,‎ 所以 .‎ ‎19.证:(Ⅰ)在Rt△BAD中,AD=2,BD=, ‎ ‎∴AB=2,ABCD为正方形,因此BD⊥AC. …………2分 ‎∵PA⊥平面ABCD,BDÌ平面ABCD, ∴BD⊥PA . ‎ 又∵PA∩AC=A∴BD⊥平面PAC. 所以 BD⊥PC; …………7分 ‎(Ⅱ)∵PA=AB=AD=2∴PB=PD=BD= …………8分 设C到面PBD的距离为d,由,…………10分 有, …………11分 ‎ 即,…………12分 得 ………14分 ‎ ‎20.(1)最小正周期是,单调减区间为:;(2) 解:(1)由已知,‎ 有 ‎ 的最小正周期是 设,解得 故的单调减区间为: ‎(2)由题意,在上恒成立;‎ ,‎ ,‎ ;‎ .‎ ‎21.(1);(2)‎ ‎(1)将的参数方程化为普通方程得:‎ 由,得的极坐标方程为: ‎ 将点代入中得:,解得:‎ 代入的极坐标方程整理可得:‎ 的极坐标方程为:‎ ‎(2)将点,代入曲线的极坐标方程得:‎ ‎,‎ ‎22解:(1)f′(x)=+(1-a)x-b.‎ 由题设知f′(1)=0,解得b=1,…………………………(3分)‎ ‎(2)f(x)的定义域为(0,+∞), 由(1)知,f(x)=aln x+x2-x,‎ f′(x)=+(1-a)x-1=(x-1).………….(5分)‎ ‎(ⅰ)若a≤,则≤1,故当x∈(1,+∞)时,‎ f′(x)>0,f(x)在(1,+∞)上单调递增.所以,存在x0≥1,使得f(x0)<的充要条件为f(1)<,‎ 即-1<,解得--11,故当x∈时,f′(x)<0;‎ 当x∈时,f′(x)>0.‎ f(x)在上单调递减,在上单调递增.‎ 所以,存在x0≥1,使得f(x0)<的充要条件为f<.‎ 而f=aln++>,所以不合题意.………(9分)‎ ‎(ⅲ)若a>1, 则f(1)=-1=<,符合题意.……………………(11分)‎ 综上,a的取值范围是(--1,-1)∪(1,+∞).……………………(12分)‎

相关文档