- 212.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第四节 直线与圆、圆与圆的位置关系
[考纲传真] (教师用书独具)1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.
(对应学生用书第115页)
[基础知识填充]
1.判断直线与圆的位置关系常用的两种方法
(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr⇔相离.
(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.
2.圆与圆的位置关系
设圆O1:(x-a1)2+(y-b1)2=r(r1>0),
圆O2:(x-a2)2+(y-b2)2=r(r2>0).
方法
位置关系
几何法:圆心距d与r1,r2的关系
代数法:联立两个圆的方程组成方程组的解的情况
相离
d>r1+r2
无解
外切
d=r1+r2
一组实数解
相交
|r2-r1|0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交
C.外切 D.相离
(2)(2018·汉中模拟)若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为2,则a=________.
(1)B (2)1 [(1)法一:由得两交点为(0,0),(-a,a).∵圆M截直线所得线段长度为2,∴=2.又a>0,∴a=2.
∴圆M的方程为x2+y2-4y=0,即x2+(y-2)2=4,圆心M(0,2),半径r1=2.
又圆N:(x-1)2+(y-1)2=1,圆心N(1,1),半径r2=1,
∴|MN|==.
∵r1-r2=1,r1+r2=3,1<|MN|<3,∴两圆相交.
法二:∵x2+y2-2ay=0(a>0)⇔x2+(y-a)2=a2(a>0),
∴M(0,a),r1=A.
∵圆M截直线x+y=0所得线段的长度为2,∴圆心M到直线x+y=0的距离d==,解得a=2.
以下同法一.
(2)方程x2+y2+2ay-6=0与x2+y2=4.
两式相减得:2ay=2,则y=.
由已知条件=,即a=1.]
[规律方法] 1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系.
2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.
3.若两圆相交,则两圆的连心线垂直平分公共弦.
[变式训练2] (1)圆x2+y2-6x+16y-48=0与圆x2+y2+4x-8y-44=0的公切线条数为( )
A.1 B.2
C.3 D.4
(2)(2017·山西太原模拟)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )
A.21 B.19
C.9 D.-11
(1)B (2)C [(1)将两圆x2+y2-6x+16y-48=0与x2+y2+4x-8y-44=0化为标准形式分别为(x-3)2+(y+8)2=112,(x+2)2+(y-4)2=82.因此两圆的圆心和半径分别为O1(3,-8),r1=11;Q2(-2,4),r2=8.故圆心距|O1O2|==13.又|r1+r2|>|O1O2|>|r1-r2|,因此两圆相交,公切线只有2条.
(2)圆C1的圆心为C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=(m<25).从而|C1C2|==5.由两圆外切得|C1C2|=r1+r2,即1+=5,解得m=9,故选C.]
直线与圆的综合问题
(2016·江苏高考改编)如图841,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N
的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.
【导学号:79170281】
图841
[解] 圆M的标准方程为(x-6)2+(y-7)2=25,
所以圆心M(6,7),半径为5. 1分
(1)由圆心N在直线x=6上,可设N(6,y0).
因为圆N与x轴相切,与圆M外切,
所以0