- 94.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019届二轮复习 “数列与数学归纳法”专题提能课 课时作业(全国通用)
A组——易错清零练
1.已知等比数列{an}的前n项和为Sn,S10=10,S30=130,则S40=( )
A.-510 B.400
C.400或-510 D.30或40
解析:选B 等比数列{an}中,S10,S20-S10,S30-S20,S40-S30成等比数列,且由题意知,S20>0,所以S10(S30-S20)=(S20-S10)2,即10(130-S20)=(S20-10)2,解得S20=40,又(S20-S10)(S40-S30)=(S30-S20)2,即30(S40-130)=902,解得S40=400.
2.在数列{an}中,a1=1,a2=2,an+2-an=1+(-1)n,那么S100的值为( )
A.2 500 B.2 600
C.2 700 D.2 800
解析:选B 当n为奇数时,an+2-an=0⇒an=1,
当n为偶数时,an+2-an=2⇒an=n,
故an=
于是S100=50+=2 600.
3.在数列{an}中,“an=2an-1,n=2,3,4,…”是“{an}是公比为2的等比数列”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B 当an=0时,也有an=2an-1,n=2,3,4,…,但{an}不是等比数列,因此充分性不成立;当{an}是公比为2的等比数列时,有=2,n=2,3,4,…,即an=2an-1,n=2,3,4,…,所以必要性成立.
4.已知数列{an}的前n项和为Sn=n2+1,数列{bn}满足bn=,则bn=________.
解析:当n=1时,a1=S1=2,
因为Sn=n2+1,Sn-1=(n-1)2+1(n≥2),
两式相减得an=Sn-Sn-1=2n-1(n≥2),
所以当n≥2时,an=2n-1,
又a1=2不符合上式,所以an=
因为bn=,所以bn=
答案:
5.已知一个等比数列{an}的前4项之积为,第2,3项的和为,则数列{an}的公比q=________.
解析:设数列{an}的前4项分别为a,aq,aq2,aq3,
则可得
所以(1+q)4=64q2,即(1+q)2=±8q,
当q>0时,可得q2-6q+1=0,
解得q=3±2,
当q<0时,可得q2+10q+1=0,
解得q=-5±2.
综上,q=3±2或q=-5±2.
答案:3±2或-5±2
B组——方法技巧练
1.已知正项数列{an}中,a1=1,且(n+2)a-(n+1)a+anan+1=0,则它的通项公式为( )
A.an= B.an=
C.an= D.an=n
解析:选B 因为(n+2)a-(n+1)a+anan+1=0,所以[(n+2)an+1-(n+1)an](an+1+an)=0.又{an}为正项数列,所以(n+2)an+1-(n+1)an=0,即=,则an=··…··a1=··…··1=.故选B.
2.(2019届高三·豫南十校联考)设f(x)是定义在R上的恒不为零的函数,且对任意的x,y∈R,都有f(x)·f(y)=f(x+y).若a1=,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是( )
A. B.
C. D.
解析:选C 在f(x)·f(y)=f(x+y)中,令x=n,y=1,得f(n+1)=f(n)f(1),又a1=,an=f(n)(n∈N*),则an+1=an,所以数列{an}是首项和公比都是的等比数列,其前n项和Sn=
=1-∈,故选C.
3.已知数列{an}中,a1=1,an+1=(n∈N*),则数列{an}的通项公式为________.
解析:因为an+1=(n∈N*),
所以=+1,
设+t=3,
所以3t-t=1,
解得t=,
所以+=3,
又+=1+=,
所以数列是以为首项,3为公比的等比数列,
所以+=×3n-1=,
所以=,所以an=.
答案:an=
4.(2018·惠州调研)已知数列{an}中,点(an,an+1)在直线y=x+2上,且首项a1=1.
(1)求数列{an}的通项公式;
(2)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,请写出适合条件Tn≤Sn的所有n的值.
解:(1)根据已知a1=1,an+1=an+2,
即an+1-an=2=d,
所以数列{an}是首项为1,公差为2的等差数列,
an=a1+(n-1)d=2n-1.
(2)数列{an}的前n项和Sn=n2.
等比数列{bn}中,b1=a1=1,b2=a2=3,
所以q=3,bn=3n-1.
数列{bn}的前n项和Tn==.
Tn≤Sn即≤n2,又n∈N*,
所以n=1或2.
C组——创新应用练
1.(2018·襄阳四校联考)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:
(1)构造数列1,,,,…,; ①
(2)将数列①的各项乘以,得到一个新数列a1,a2,a3,a4,…,an.
则a1a2+a2a3+a3a4+…+an-1an=( )
A. B.
C. D.
解析:选C 依题意可得新数列为,,,…,×,所以a1a2+a2a3+…+an-1an===×=.故选C.
2.已知数列{an}的通项公式为an=log(n+1)(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·an为整数的n叫做“优数”,则在(0,2 018]内的所有“优数”的和为( )
A.1 024 B.2 012
C.2 026 D.2 036
解析:选C a1·a2·a3·…·an=log23·log34·log45·…·log(n+1)(n+2)=log2(n+2)=k,k∈Z,令00)的图象上,若点Bn的坐标为(n,0)(n≥2,n∈N*),记矩形AnBnCnDn的周长为an,则a2+a3+…+a10=( )
A.208 B.212
C.216 D.220
解析:选C 由题意得|AnDn|=|BnCn|=n+,设点Dn的坐标为,则有x+=n+,得x=(x=n舍去),即An,则|AnBn|=n-,所以矩形的周长为an=2(|AnBn|+|BnCn|)=2+2=4n,则a2+a3+…+a10=4(2+3+4+…+10)=216.
5.(2018·上海松江区联考)在一个有穷数列的每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”.已知数列1,2第一次“H扩展”后得到数列1,3,2,第二次“H扩展”后得到数列1,4,3,5,2,那么第10次“H扩展”后得到的数列的所有项的和为( )
A.88 572 B.88 575
C.29 523 D.29 526
解析:选B 记第n次“H扩展”后得到的数列所有项的和为Hn,则H1=1+2+3=6,H2=1+3+2+4+5=15,H3=15+5+7+8+7=42,从中发现H3-H2=27=33,H2-H1=9=32,归纳得Hn-Hn-1=3n(n≥2),利用累加法求和得Hn=,n≥2,所以H10==88 575,故选B.
6.(2018·河北衡水中学检测)对于数列{an},定义Hn=为{an}的“优值”,现在已知某数列{an}的“优值”Hn=2n+1,记数列{an-kn}的前n项和为Sn,若Sn≤S5对任意的n∈N*恒成立,则实数k的取值范围为________.
解析:由题意知Hn==2n+1,
所以a1+2a2+…+2n-1an=n×2n+1, ①
当n≥2时,a1+2a2+…+2n-2an-1=(n-1)×2n, ②
①-②得:2n-1an=n×2n+1-(n-1)×2n,
解得an=2n+2,n≥2,
当n=1时,a1=4也满足上式,所以数列{an}的通项公式为an=2n+2,且数列{an}为等差数列,公差为2.
令bn=an-kn=(2-k)n+2,则数列{bn}也是等差数列,
由Sn≤S5对任意的n∈N*恒成立,知2-k<0,且b5=12-5k≥0,b6=14-6k≤0,
解得≤k≤.
答案:
7.设函数f(x)=+sin x的所有正的极小值点从小到大排成的数列为{xn}.
(1)求数列{xn}的通项公式;
(2)令bn=,设数列的前n项和为Sn,求证:Sn<.
解:(1)f(x)=+sin x,令f′(x)=+cos x=0,得x=2kπ±(k∈Z),
由f′(x)>0⇒2kπ-0,所以c1=1.
当n≥2时,c+c+c+…+c=T,
c+c+c+…+c=T.
两式相减,得c=T-T
=(Tn-Tn-1)(Tn+Tn-1)
=cn·(Tn+Tn-1).
因为cn>0,所以c=Tn+Tn-1=2Tn-cn.
显然c1=1适合上式,
所以当n≥2时,c=2Tn-1-cn-1.
于是c-c=2(Tn-Tn-1)-cn+cn-1
=2cn-cn+cn-1=cn+cn-1.
因为cn+cn-1>0,所以cn-cn-1=1,
所以数列{cn}是首项为1,公差为1的等差数列,
所以cn=n,Tn=.
所以==不为常数,
故数列{cn}不是“幸福数列”.