- 794.08 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.归纳推理
根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体,由个别到一般的推理.
归纳推理的基本模式:a,b,c∈M且a,b,c具有某属性,
结论:任意d∈M,d也具有某属性.
2.类比推理
由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理.
类比推理的基本模式:A:具有属性a,b,c,d;
B:具有属性a′,b′,c′;
结论:B具有属性d′.
(a,b,c,d与a′,b′,c′,d′相似或相同)
3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确.
4.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.
【思考辨析】
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × )
(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ )
(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × )
(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )
(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N+).( × )
(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )
1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于( )
A.28 B.76 C.123 D.199
答案 C
解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a10+b10=123.
2.下面几种推理过程是演绎推理的是( )
A.在数列{an}中,a1=1,an=(an-1+)(n≥2),由此归纳数列{an}的通项公式
B.由平面三角形的性质,推测空间四面体性质
C.两直线平行,同旁内角互补,如果∠A和∠B是两条平行直线与第三条直线形成的同旁内角,则∠A+∠B=180°
D.某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人
答案 C
解析 A、D是归纳推理,B是类比推理,C符合三段论模式,故选C.
3.(2017·济南质检)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:
①垂直于同一个平面的两条直线互相平行;
②垂直于同一条直线的两条直线互相平行;
③垂直于同一个平面的两个平面互相平行;
④垂直于同一条直线的两个平面互相平行.
则正确的结论是________.
答案 ①④
解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交.
4.(教材改编)在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n (n<19,n∈N+)成立,类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为________________.
答案 b1b2…bn=b1b2…b17-n(n<17,n∈N+)
解析 利用类比推理,借助等比数列的性质,
b=b1+n·b17-n,可知存在的等式为b1b2…bn=b1b2…b17-n(n<17,n∈N+).
5.(2016·西安质检)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,
由以上可推测出一个一般性结论:对于n∈N+,1+2+…+n+…+2+1=______.
答案 n2
解析 ∵1=12,1+2+1=22,
1+2+3+2+1=32,
1+2+3+4+3+2+1=42,…,
∴归纳可得1+2+…+n+…+2+1=n2.
题型一 归纳推理
命题点1 与数字有关的等式的推理
例1 (2016·山东)观察下列等式:
-2+-2=×1×2;
-2+-2+-2+-2=×2×3;
-2+-2+-2+…
+-2=×3×4;
-2+-2+-2+…
+-2=×4×5;
…
照此规律,-2+-2+-2+…+-2=__________.
答案 ×n×(n+1)
解析 观察等式右边的规律:第1个数都是,第2个数对应行数n,第3个数为n+1.
命题点2 与不等式有关的推理
例2 (2016·山西四校联考)已知x∈(0,+∞),观察下列各式:x+≥2,x+=++≥3,x+=+++≥4,…,类比得x+≥n+1(n∈N+),则a=________.
答案 nn
解析 第一个式子是n=1的情况,此时a=11=1;第二个式子是n=2的情况,此时a=22=
4;第三个式子是n=3的情况,此时a=33=27,归纳可知a=nn.
命题点3 与数列有关的推理
例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为=n2+n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数 N(n,3)=n2+n,
正方形数 N(n,4)=n2,
五边形数 N(n,5)=n2-n,
六边形数 N(n,6)=2n2-n.
… …
可以推测N(n,k)的表达式,由此计算N(10,24)=____________.
答案 1 000
解析 由N(n,4)=n2,N(n,6)=2n2-n,可以推测:当k为偶数时,N(n,k)=n2+n,
∴N(10,24)=×100+×10
=1 100-100=1 000.
命题点4 与图形变化有关的推理
例4 (2017·大连月考)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )
A.21 B.34 C.52 D.55
答案 D
解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D.
思维升华 归纳推理问题的常见类型及解题策略
(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.
(2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.
(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.
(4)与图形变化有关的推理.
合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.
(1)(2015·陕西)观察下列等式:
1-=,
1-+-=+,
1-+-+-=++,
…
据此规律,第n个等式可为_______________________________________________________.
(2)(2016·抚顺模拟)观察下图,可推断出“x”处应该填的数字是________.
答案 (1)1-+-+…+-=++…+
(2)183
解析 (1)等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n个等式左边有2n项且正负交错,应为1-+-+…+-;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n个有n项,且由前几个的规律不难发现第n个等式右边应为++…+.
(2)由前两个图形发现:中间数等于四周四个数的平方和,∴“x”处应填的数字是32+52+72+102=183.
题型二 类比推理
例5 (1)(2017·西安质检)对于命题:如果O是线段AB上一点,则||+||=0;将它类比到平面的情形是:若O是△ABC内一点,有S△OBC·+S△OCA·+S△OBA·=0;将它类比到空间的情形应该是:若O是四面体ABCD内一点,则有________.
(2)求 的值时,采用了如下方法:令 =x,则有x=,解得x=(负值已舍去).可用类比的方法,求得1+的值为________.
答案 (1)VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·=0
(2)
解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·=0.
(2)令1+=x,则有1+=x,
解得x=(负值已舍去).
思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.
(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.
在平面上,设ha,hb,hc是三角形ABC三条边上的高,P为三角形内任一点,P到相应三边的距离分别为Pa,Pb,Pc,我们可以得到结论:++=1.把它类比到空间,则三棱锥中的类似结论为______________________.
答案 +++=1
解析 设ha,hb,hc,hd分别是三棱锥A-BCD四个面上的高,P为三棱锥A-BCD内任一点,P到相应四个面的距离分别为Pa,Pb,Pc,Pd,于是可以得出结论:+++=1.
题型三 演绎推理
例6 设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=a-4n-1,n∈N+,且a2,a5,a14构成等比数列.
(1)证明:a2=;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有++…+<.
(1)证明 当n=1时,4a1=a-5,a=4a1+5,
又an>0,∴a2=.
(2)解 当n≥2时,4Sn-1=a-4(n-1)-1,
∴4an=4Sn-4Sn-1=a-a-4,
即a=a+4an+4=(an+2)2,
又an>0,∴an+1=an+2,
∴当n≥2时,{an}是公差为2的等差数列.
又a2,a5,a14成等比数列,
∴a=a2·a14,即(a2+6)2=a2·(a2+24),
解得a2=3.
由(1)知a1=1,
又a2-a1=3-1=2,
∴数列{an}是首项a1=1,公差d=2的等差数列.
∴an=2n-1.
(3)证明 ++…+
=+++…+
=[(1-)+(-)+…+(-)]
=(1-)<.
思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.
(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为( )
A.大前提错误 B.小前提错误
C.推理形式错误 D.非以上错误
(2)(2016·洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是( )
A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数
B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数
C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数
D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数
答案 (1)C (2)B
解析 (1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.
(2)A中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A错误;C、D都不是由一般性命题到特殊性命题的推理,所以C、D都不正确,只有B正确,故选B.
10.高考中的合情推理问题
考点分析 合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档.
解决此类问题的注意事项与常用方法:
(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.
(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.
典例 (1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
①b2 014是数列{an}的第________项;
②b2k-1=________.(用k表示)
(2)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x10且a≠1)是增函数,而函数y=是对数函数,所以y=是增函数”所得结论错误的原因是( )
A.大前提错误 B.小前提错误
C.推理形式错误 D.大前提和小前提都错误
答案 A
解析 因为当a>1时,y=logax在定义域内单调递增,当0|AB|,则P点的轨迹为椭圆
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式
C.由圆x2+y2=r2的面积πr2,猜想出椭圆+=1的面积S=πab
D.科学家利用鱼的沉浮原理制造潜艇
答案 B
解析 从S1,S2,S3猜想出数列的前n项和Sn,是从特殊到一般的推理,所以B是归纳推理,故应选B.
3.(2016·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )
A.22项 B.23项
C.24项 D.25项
答案 C
解析 两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以为第24项.
4.(2016·泉州模拟)正偶数列有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2 016所在等式的序号为( )
A.29 B.30
C.31 D.32
答案 C
解析 由题意知,每个等式正偶数的个数组成等差数列3,5,7,…,2n+1,…,其前n项和Sn==n(n+2)且S31=1 023,即第31个等式中最后一个偶数是1 023×2=2 046,且第31个等式中含有63个偶数,故2 016在第31个等式中.
5.若数列{an}是等差数列,则数列{bn}(bn=)也为等差数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则dn的表达式应为( )
A.dn= B.dn=
C.dn= D.dn=
答案 D
解析 若{an}是等差数列,则a1+a2+…+an=na1+d,
∴bn=a1+d=n+a1-,即{bn}为等差数列;
若{cn}是等比数列,
则c1·c2·…·cn=c·q1+2+…+(n-1)=,
∴dn==,即{dn}为等比数列,故选D.
6.把正整数按一定的规则排成如图所示的三角形数表,设aij(i,j∈N+)是位于这个三角形数表中从上往下第i行,从左往右数第j个数,如a42=8,若aij=2 009,则i与j的和为________.
答案 107
解析 由题可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i=63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j-1),所以j=44,所以i+j=107.
7.若P0(x0,y0)在椭圆+=1(a>b>0)外,过P0作椭圆的两条切线的切点分别为P1,P2,则切点弦P1P2所在的直线方程是+=1,那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线-=1(a>0,b>0)外,过P0作双曲线的两条切线,切点分别为P1,P2,则切点弦P1P2所在直线的方程是________________.
答案 -=1
解析 设P1(x1,y1),P2(x2,y2),
则P1,P2的切线方程分别是
-=1,-=1.
因为P0(x0,y0)在这两条切线上,
故有-=1,-=1,
这说明P1(x1,y1),P2(x2,y2)在直线-=1上,
故切点弦P1P2所在的直线方程是-=1.
8.如图,我们知道,圆环也可以看作线段AB绕圆心O旋转一周所形成的平面图形,
又圆环的面积S=π(R2-r2)=(R-r)×2π×.所以,圆环的面积等于以线段AB=R-r为宽,以AB中点绕圆心O旋转一周所形成的圆的周长2π×为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0