• 2.21 MB
  • 2021-06-16 发布

2018届二轮复习坐标系与参数方程课件文(全国通用)

  • 34页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第 1 讲 坐标系与参数方程 高考定位  高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用 . 以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识 . 真 题 感 悟 考 点 整 合 1. 直角坐标与极坐标的互化 2. 直线的极坐标方程 3. 圆的极坐标方程 4. 直线的参数方程 5. 圆、椭圆的参数方程 【 迁移探究 1 】 本例条件不变,求直线 C 1 与曲线 C 3 交点的极坐标 . 【 迁移探究 2 】 本例条件不变,求圆 C 2 关于极点的对称圆的方程 . 解   ∵ 点 ( ρ , θ ) 与点 ( - ρ , θ ) 关于极点对称,设点 ( ρ , θ ) 为对称圆上任意一点,则 ( - ρ , θ ) 在圆 C 2 上, ∴ ( - ρ ) 2 + 2 ρ cos θ + 4 ρ sin θ + 4 = 0 , 故所求圆 C 2 关于极点的对称圆方程为 ρ 2 + 2 ρ cos θ + 4 ρ sin θ + 4 = 0. 探究提高  1. 将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参、三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件 . 2. 在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解 . 探究提高   1. 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解 . 当然,还要结合题目本身特点,确定选择何种方程 . 2. 数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用 ρ 和 θ 的几何意义,直接求解,能达到化繁为简的解题目的 . 1. 在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决 . 2. 要熟悉常见曲线的参数方程、极坐标方程,如:圆、椭圆、及过一点的直线,在研究直线与它们的位置关系时常用的技巧是转化为普通方程解答 .