- 537.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题20两角和与差的正弦、余弦、正切公式
1.会用向量的数量积推导出两角差的余弦公式;
2.能利用两角差的余弦公式导出两角差的正弦、正切公式;
3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;
4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).
1.两角和与差的正弦、余弦和正切公式
sin(α±β)=sin__αcos__β±cos__αsin__β.
cos(α∓β)=cos__αcos__β±sin__αsin__β.
tan(α±β)=.
2.二倍角的正弦、余弦、正切公式
sin 2α=2sin__αcos__α.
cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
tan 2α=.
3.有关公式的逆用、变形等
(1)tan α±tan β=tan(α±β)(1∓tan__αtan__β).
(2)cos2α=,sin2α=.
(3)1+sin 2α=(sin α+cos α)2,
1-sin 2α=(sin α-cos α)2,
sin α±cos α=sin.
4.函数f(α)=asin α+bcos α(a,b为常数),可以化为f(α)=sin(α+φ)或f(α)=·cos(α-φ).
高频考点一、三角函数式的化简
【例1】 (1)cos(α+β)cos β+sin(α+β)sin β=( )
A.sin(α+2β) B.sin α
C.cos(α+2β) D.cos α
(2)化简:(0<α<π)=________.
【方法规律】三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”、“遇到根式一般要升幂”等.
【变式探究】 (1)+2的化简结果是________.
(2)化简:=________.
解析 (1)原式=+2
=2|cos 4|+2|sin 4-cos 4|,
因为π<4<π,所以cos 4<0,且sin 40,
又α∈(0,π),∴0<α<,
又∵tan 2α===>0,
∴0<2α<,
∴tan(2α-β)===1.
∵tan β=-<0,∴<β<π,-π<2α-β<0,
∴2α-β=-.
答案 (1) (2)- (3)-
【方法规律】(1)已知条件下的求值问题常先化简需求值的式子,再观察已知条件与所求值的式子之间的联系(从三角函数名及角入手),最后将已知条件及其变形代入所求式子,化简求值.
(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好.
【变式探究】 (1)4cos 50°-tan 40°=( )
A. B.
C. D.2-1
(2)已知sin+sin α=-,-<α<0,则cos α的值为________.
(3)已知cos α=,cos(α-β)=(0<β<α<),则tan 2α=________,β=________.
解析 (1)原式=4sin 40°-
=
=
=
=
==,故选C.
(2)由sin+sin α=-,
得sin α+cos α=-,sin=-.
又-<α<0,所以-<α+<,
于是cos=.
所以cos α=cos=.
(3)∵cos α=,0<α<,
∴sin α=,tan α=4,
∴tan 2α===-.
∵0<β<α<,∴0<α-β<,
∴sin(α-β)=,
∴cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=×+×=,
∴β=.
答案 (1)C (2) (3)-
高频考点三 三角变换的简单应用
【例3】 已知△ABC为锐角三角形,若向量p=(2-2sin A,cos A+sin A)与向量q=(sin A-cos A,1+sin A)是共线向量.
(1)求角A;
(2)求函数y=2sin2B+cos的最大值.
解 (1)因为p,q共线,所以(2-2sin A)(1+sin A)
=(cos A+sin A)(sin A-cos A),则sin2A=.
又A为锐角,所以sin A=,则A=.
(2)y=2sin2 B+cos=2sin2B+cos
=2sin2B+cos=1-cos 2B+cos 2B+
sin 2B=sin 2B-cos 2B+1=sin+1.
因为B∈,所以2B-∈,所以当2B-=时,函数y取得最大值,此时B=,ymax=2.
【方法规律】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两种,一种是变换函数的名称,一种是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.
【变式探究】 已知函数f(x)=(2cos2x-1)·sin 2x+cos 4x.
(1)求f(x)的最小正周期及单调减区间;
(2)若α∈(0,π),且f=,求tan的值.
解 (1)f(x)=(2cos2x-1)sin 2x+cos 4x
=cos 2xsin 2x+cos 4x
=(sin 4x+cos 4x)=sin,
∴f(x)的最小正周期T=.
令2kπ+≤4x+≤2kπ+π,k∈Z,
得+≤x≤+,k∈Z.
∴f(x)的单调减区间为,k∈Z.
1.【2016高考新课标3理数】在中,,边上的高等于,则( )
(A) (B) (C) (D)
【答案】C
【解析】设边上的高为,则,所以,.由余弦定理,知,故选C.
2.【2016高考新课标2理数】若,则( )
(A) (B) (C) (D)
【答案】D
【解析】 ,
且,故选D.
3.【2016高考新课标3理数】若 ,则( )
(A) (B) (C) 1 (D)
【答案】A
【解析】
由,得或,所以,故选A.
【2015高考重庆,理9】若,则( )
A、1 B、2 C、3 D、4
【答案】C
【解析】
由已知,
=,选C.
(2014·新课标全国卷Ⅱ] 函数f(x)=sin(x+2φ)-2sin φcos(x+φ
)的最大值为________.
【答案】1
【解析】 函数f(x)=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cos φ-cos(x+φ)sin φ=sin x,故其最大值为1.
(2014·安徽卷)设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求sin的值.
【解析】 (1)因为A=2B,所以sin A=sin 2B=2sin Bcos B,由余弦定理得cos B==,所以由正弦定理可得a=2b·.
因为b=3,c=1,所以a2=12,即a=2 .
(2)由余弦定理得cos A===
-.因为08 B.ab(a+b)>16
C.6≤abc≤12 D.12≤abc≤24
【答案】A
【解析】 因为A+B+C=π,所以A+C=π-B,C=π-(A+B),所以由已知等式可得sin 2A+sin(π-2B)=sin[π-2(A+B)]+,即sin 2A+sin 2B=sin 2(A+B)+,
所以sin[(A+B)+(A-B)]+sin[(A+B)-(A-B)]=sin 2(A+B)+,
所以2 sin(A+B)cos(A-B)=2sin(A+B)cos(A+B)+,
所以2sin(A+B)[cos(A-B)-cos(A+B)]=,所以sin Asin Bsin C=.
由1≤S≤2,得1≤bcsin A≤2.由正弦定理得a=2Rsin A,b=2Rsin B,c=2Rsin C
,所以1≤2R2·sin Asin Bsin C≤2,所以1≤≤2,即2≤R≤2 ,所以bc(b+c)>abc=8R3sin Asin Bsin C=R3≥8.
(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10-cost-sint,t∈[0,24).
(1)求实验室这一天的最大温差.
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
【解析】(1)因为f(t)=10-2=10-2sin,
又0≤t<24,所以≤t+<,-1≤sin≤1.
当t=2时,sin=1;
当t=14时,sin=-1.
于是f(t)在[0,24)上取得的最大值是12,最小值是8.
故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.
(2014·辽宁卷)在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知·=2,cos B=,b=3.求:
(1)a和c的值;
(2)cos(B-C)的值.
【解析】(1)由·=2得c·a·cos B=2,
又cos B=,所以ac=6.
由余弦定理,得a2+c2=b2+2accos B,
又b=3,所以a2+c2=9+2×2=13.
解得或
因为a>c,所以a=3,c=2.
(2)在△ABC中,sin B===.
由正弦定理,得sin C=sin B=·=.
因为a=b>c,所以C为锐角,
因此cos C===.
所以cos(B-C)=cos Bcos C+sin Bsin C=×+×=.
(2014·全国卷)△ABC的内角A,B,C的对边分别为a,b,c.已知3acos C=2ccos A,tan A=,求B.
【解析】由题设和正弦定理得
3sin Acos C=2sin Ccos A,
故3tan Acos C=2sin C.
因为tan A=,所以cos C=2sin C,
所以tan C=.
所以tan B=tan[180°-(A+C)]
=-tan(A+C)
=
=-1,
所以B=135°.
(2014·新课标全国卷Ⅰ] 设α∈,β∈,且tan α=,则( )
A.3α-β= B.3α+β=
C.2α-β= D.2α+β=
【答案】C
(2014·四川卷)如图13所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高度是46 m,则河流的宽度BC约等于________m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,≈1.73)
图13
【答案】60
【解析】 过A点向地面作垂线,记垂足为D,则在Rt△ADB中,∠ABD=67°,AD=46 m,∴AB===50(m),
在△ABC中,∠ACB=30°,∠BAC=67°-30°=37°,AB=50 m,
由正弦定理得,BC==60 (m),
故河流的宽度BC约为60 m.
(2014·四川卷)已知函数f(x)=sin.
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f=coscos 2α,求cos α-sin α的值.
【解析】(1)因为函数y=sin x的单调递增区间为,k∈Z,
由-+2kπ≤3x+≤+2kπ,k∈Z,
得-+≤x≤+,k∈Z.
所以,函数f(x)的单调递增区间为,k∈Z.
(2)由已知,得sin=cos(cos2α-sin2α),
所以sin αcos+cos αsin=(cos2 α-sin2 α),
即sin α+cos α=(cos α-sin α)2(sin α+cos α).
当sin α+cos α=0时,由α是第二象限角,
得α=+2kπ,k∈Z,
此时,cos α-sin α=-.
当sin α+cos α≠0时,(cos α-sin α)2=.
由α是第二象限角,得cos α-sinα<0,此时cos α-sin α=-.
综上所述,cos α-sin α=-或-.
(2014·天津卷)已知函数f(x)=cos x·sin-cos2x+,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在闭区间上的最大值和最小值.
(2)因为f(x)在区间上是减函数,在区间上是增函数,f=-,f=-,f=,
所以函数f(x)在区间上的最大值为,最小值为-.
1.(1+tan 17°)(1+tan 28°)的值是( )
A.-1 B.0 C.1 D.2
解析 原式=1+tan 17°+tan 28°+tan 17°·tan 28°
=1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28°
=1+1=2.
答案 D
2.已知α是第二象限角,且tan α=-,则sin 2α=( )
A.- B. C.- D.
解析 因为α是第二象限角,且tan α=-,
所以sin α=,cos α=-,
所以sin 2α=2sin αcos α=2××=-,故选C.
答案 C
3.设a=cos 2°-sin 2°,b=,c=,则有( )
A.a<c<b B.a<b<c
C.b<c<a D.c<a<b
解析 由题意可知,a=sin 28°,b=tan 28°,c=sin 25°,
∴c<a<b.
答案 D
4.已知sin α=且α为第二象限角,则tan=( )
A.- B.- C.- D.-
解析 由题意得cos α=-,则sin 2α=-,
cos 2α=2cos2α-1=.
∴tan 2α=-,∴tan===-.
答案 D
5.cos·cos·cos=( )
A.- B.- C. D.
解析 cos·cos·cos=cos 20°·cos 40°·cos 100°=-cos 20°·
cos 40°·cos 80°=-
=-
=-=-=-=-.
答案 A
6.设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为( )
A.[-,1] B.[-1,]
C.[-1,1] D.[1,]
解析 ∵sin αcos β-cos αsin β=1,∴sin(α-β)=1,
∵α,β∈[0,π],∴α-β=,由⇒≤α≤π,
∴sin(2α-β)+sin(α-2β)=sin+sin(α-2α+π)=cos α+sin α=sin,∵≤α≤π,∴≤α+≤π,∴-1≤sin≤1,即所求的取值范围是[-1,1],故选C.
答案 C
7.已知cos4α-sin4α=,且α∈,则cos=________.
8.若cos=,则sin的值是________.
解析 sin=sin=
cos 2=2cos2-1=2×-1=-.
答案 -
9.已知α∈,β∈,且cos=,sin=-,则cos(α+β)=________.
解析 ∵α∈,cos=,
∴sin=-,
∵sin=-,∴sin=,
又∵β∈,∴cos=,
∴cos(α+β)=cos=×-×=-.
答案 -
10.已知θ∈,且sin=,则tan 2θ=________.
解析 sin=,得sin θ-cos θ=,①
θ∈,①平方得2sin θcos θ=,可求得sin θ+cos θ=,∴sin θ=,cos θ=,∴tan θ=,tan 2θ==-.
答案 -
11.已知向量a=(cos θ,sin θ),b=(2,-1).
(1)若a⊥b,求的值;
(2)若|a-b|=2,θ∈,求sin的值.
解 (1)由a⊥b可知,a·b=2cos θ-sin θ=0,
所以sin θ=2cos θ,
所以==.
(2)由a-b=(cos θ-2,sin θ+1)可得,
|a-b|==
=2,
即1-2cos θ+sin θ=0.
又cos2θ+sin2θ=1,且θ∈,
所以sin θ=,cos θ=.
所以sin=(sin θ+cos θ)==.
12.设cos α=-,tan β=,π<α<,0<β<,求α-β的值.
解 法一 由cos α=-,π<α<,得sin α=-,tan α=2,又tan β=,
于是tan(α-β)===1.
又由π<α<,
0<β<可得-<-β<0,<α-β<,
因此,α-β=.
法二 由cos α=-,π<α<得sin α=-.
由tan β=,0<β<得sin β=,cosβ=.
所以sin(α-β)=sin αcos β-cos αsin β=
-=-.
又由π<α<,0<β<可得-<-β<0,<α-β<,因此,α-β=.
13. 如图,现要在一块半径为1 m,圆心角为的扇形白铁片AOB上剪出一个平行四边形MNPQ,使点P在弧AB上,点Q在OA上,点M,N在OB上,
设∠BOP=θ,平行四边形MNPQ的面积为S.
(1)求S关于θ的函数关系式.
(2)求S的最大值及相应的θ角.
解 (1)分别过P,Q作PD⊥OB于D,QE⊥OB于E,则四边形QEDP为矩形.
由扇形半径为1 m,得PD=sin θ,OD=cos θ.在Rt△OEQ中,OE=QE=PD,MN
=QP=DE=OD-OE=cos θ-sin θ,S=MN·PD=·sin θ=sin θcos θ-·sin2θ,θ∈.