- 518.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第三章 三角函数、解三角形
第1讲 任意角和弧度制及任意角的三角函数
1.任意角的概念
(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.
(2)角的分类
(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.
2.弧度制的定义和公式
(1)定义:把长度等于半径
长的弧所对的圆心角叫做1弧度的角.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.
(2)公式
3.任意角的三角函数
(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα=x,tanα=.
(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线、余弦线和正切线.
1.概念辨析
(1)锐角是第一象限的角,第一象限的角也都是锐角.( )
(2)角α的三角函数值与其终边上点P的位置无关.( )
(3)不相等的角终边一定不相同.( )
(4)借助三角函数线可知,若α为第一象限角,则sinα+cosα>1.( )
答案 (1)× (2)√ (3)× (4)√
2.小题热身
(1)下列与的终边相同的角的表达式中正确的是( )
A.2kπ+45°(k∈Z) B.k·360°+(k∈Z)
C.k·360°-315°(k∈Z) D.kπ+(k∈Z)
答案 C
解析 角度制与弧度制不能混用,排除A,B;因为=2π+,所以与终边相同的角可表示为k·360°+45°(k∈Z)或k·360°-315°等,故选C.
(2)若角θ同时满足sinθ<0且tanθ<0,则角θ的终边一定落在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 D
解析 因为sinθ<0,所以θ的终边位于x轴的下方,因为tanθ<0,所以θ的终边在第二、四象限,所以角θ的终边一定落在第四象限.
(3)已知扇形的圆心角为120°,其弧长为2π,则此扇形的面积为________.
答案 3π
解析 设此扇形的半径为r,由题意得r=2π,所以r=3,所以此扇形的面积为×2π×3=3π.
(4)设角θ的终边经过点P(4,-3),那么2cosθ-sinθ=________.
答案
解析 因为r=|OP|==5,所以cosθ=,sinθ=-,所以2cosθ-sinθ=2×-=.
题型 象限角与终边相同的角
1.(2018·长春一模)若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=-x上,则角α的取值集合是( )
A.{α B.{α
C.{α D.{α
答案 D
解析 因为直线y=-x的倾斜角是,所以终边落在直线y=-x上的角的取值集合为{α,故选D.
2.与2019°的终边相同,且在0°~360°内的角是________.
答案 219°
解析 因为2019°=5×360°+219°,所以与2019°终边相同的角可表示为k·360°+219°(k∈Z).其中在0°~360°内的角是219°.
3.若角α是第二象限角,则是第________象限角.
答案 一或三
解析 因为角α是第二象限角,
所以2kπ+<α<2kπ+π,k∈Z,
所以kπ+<0,L=2r+单调递增,
所以当r=2时,扇形的周长L取得最小值,
此时扇形的圆心角α===2.
应用弧度制解决问题的方法
(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.
(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.
(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
1.扇形弧长为20 cm,圆心角为100°,则该扇形的面积为________ cm2.
答案
解析 由弧长公式l=|α|r,得r==,
∴S扇形=lr=×20×=.
2.如果一个扇形的半径变为原来的一半,而弧长变为原来的倍,则该弧所对的圆心角是原来的________倍.
答案 3
解析 设这个扇形的半径为r,弧长为l,圆心角为α,变化后半径为r′,弧长为l′,圆心角为α′,则α′===3α,所以该弧所对的圆心角是原来的3倍.
题型 任意角三角函数的定义及应用
角度1 利用三角函数的定义求值
1.(2018·济南二模)已知角α的终边经过点(m,-2m),其中m≠0,则sinα+cosα等于( )
A.- B.± C.- D.±
答案 B
解析 ∵角α的终边经过点(m,-2m),其中m≠0,则当m>0时,x=m,y=-2m,r=|m|=m,sinα===-,cosα===,sinα+cosα=-.当m<0时,x=m,y=-2m,r=|m|=-m,sinα===,cosα===-,sinα+cosα=.综上可得,sinα+cosα=±.
角度2 三角函数值符号的判定
2.(2018·怀化模拟)sin2·cos3·tan4的值( )
A.小于0 B.大于0
C.等于0 D.不存在
答案 A
解析 因为<2<3<π<4<,所以2 rad和3 rad的角是第二象限角,4 rad的角是第三象限角,所以sin2>0,cos3<0,tan4>0,所以sin2·cos3·tan4<0.
角度3 三角函数线的应用
3.函数y=的定义域为________.
答案 {x
解析 ∵2sinx-1≥0,∴sinx≥.由三角函数线画出x满足
条件的终边范围(如图阴影所示).
∴x∈{x.
1.用定义法求三角函数值的两种情况
(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解.
(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.
2.三角函数值符号的记忆口诀
一全正、二正弦,三正切、四余弦.
3.三角函数线的两个主要应用
(1)三角式比较大小;
(2)解三角不等式(方程).
1.若sinθ·cosθ<0,>0,则角θ是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
答案 D
解析 由>0,得>0,cosθ>0,又sinθ·cosθ<0,所以sinθ<0,所以θ为第四象限角,选D.
2.满足cosα≤-的角α的集合为________.
答案 {α
解析 由三角函数线画出满足条件的x的终边范围(如图阴影所示).所以α∈{α.
3.已知角α的终边经过点P(-x,-6),且cosα=-,则x=________.
答案
解析 r=|OP|==,因为cosα=-,所以=-,显然x>0,解得x=.