§12.3 离散型随机变量的分布列及期望、方差
最新考纲
考情考向分析
1.理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.
2.了解超几何分布,并能进行简单应用.
3.理解取有限个值的离散型随机变量的均值、方差的概念.会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.
以理解离散型随机变量及其分布列的概念为主,经常以频率分布直方图为载体,结合频率与概率,考查离散型随机变量、离散型随机变量分布列的求法.在高考中以解答题的形式进行考查,难度多为中低档.
1.离散型随机变量
如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.
2.离散型随机变量的分布列及性质
(1)离散型随机变量的分布列:
若离散型随机变量X所有可能取的值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率为p1,p2,…,pn,则表
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
称为离散型随机变量X的概率分布或称为离散型随机变量X的分布列.
(2)离散型随机变量的分布列的性质:
①pi≥0_(i=1,2,3,…,n);②p1+p2+…+pn=1;
③P(xi≤x≤xj)=pi+pi+1+…+pj.
3.常见离散型随机变量的分布列
(1)二点分布
如果随机变量X的分布列为
X
1
0
P
p
q
其中0
0,所以a=1,
所以E(X)=0×+1×=.故选C.
2.设随机变量X的分布列如下,则P(|X-2|=1)等于( )
X
1
2
3
4
P
m
A. B. C. D.
答案 C
解析 由++m+=1,得m=,
所以P(|X-2|=1)=P(X=1)+P(X=3)=+=.故选C.
3.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字和为X,则X≥8的概率是( )
A. B. C. D.
答案 C
解析 由题意知,X的取值为6,9,12,
又P(X=9)==,P(X=12)==,
所以X≥8的概率为+=,故选C.
4.设随机变量ξ的分布列为P=ak(k=1,2,3,4,5),则P等于( )
A. B. C. D.
答案 C
解析 由题意知,分布列为
ξ
1
P
a
2a
3a
4a
5a
由分布列的性质可得,a+2a+3a+4a+5a=1,
解得a=.
所以P=P+P+
P=++=.故选C.
5.一个袋中有4个红球,3个黑球,小明从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球,则小明得分大于6分的概率是( )
A. B. C. D.
答案 A
解析 记得分为X,则X的可能取值为5,6,7,8,P(X=7)==;P(X=8)==,所以P(X>6)=P(X=7)+P(X=8)=+=.
6.设X是一个离散型随机变量,其分布列为
X
-1
0
1
P
2-3q
q2
则q等于( )
A.1 B.±
C.- D.+
答案 C
解析 ∵+2-3q+q2=1,∴q2-3q+=0,解得q=±.又由题意知0600时,
E(Y)=×[200×2+(n-200)×(-2)]+×[400×2+(n-400)×(-2)]+×[600×2+(n-600)×(-2)]=1 760-2n<560,
所以当n=400时,Y的期望取得最大值640.
13.已知6只小白鼠中有1只感染了病毒,需要对6只小白鼠进行病毒DNA化验来确定哪一只受到了感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染病毒的小白鼠为止.方案乙:将6只小白鼠分为两组,每组三只,将其中一组的三只小白鼠的待化验物质混合在一起化验,若化验结果显示含有病毒DNA,则表明感染病毒的小白鼠在这三只当中,然后逐个化验,直到确定感染病毒的小白鼠为止;若化验结果显示不含病毒DNA,则在另外一组中逐个进行化验.
(1)求执行方案乙化验次数恰好为2次的概率;
(2)若首次化验的化验费为10元,第二次化验的化验费为8元,第三次及以后每次化验的化验费都是6元,求方案甲所需化验费的分布列和期望.
解 (1)执行方案乙化验次数恰好为2次的情况分两种:
第一种,先化验一组,结果显示不含病毒DNA,再从另一组中任取一只进行化验,其恰好含有病毒DNA,此种情况的概率为×=;第二种,先化验一组,结果显示含病毒DNA,再从中逐个化验,恰好第一只含有病毒,此种情况的概率为×=.
所以执行方案乙化验次数恰好为2次的概率为
+=.
(2)设用方案甲化验需要的化验费为η(单位:元),则η的可能取值为10,18,24,30,36.
P(η=10)=,
P(η=18)=×=,
P(η=24)=××=,
P(η=30)=×××=,
P(η=36)=×××=,
则化验费η的分布列为
η
10
18
24
30
36
P
所以E(η)=10×+18×+24×+30×+36×=(元).
14.为了研究学生的数学核心素养与抽象(能力指标x)、推理(能力指标y)、建模(能力指标z)的相关性,并将它们各自量化为1,2,3三个等级,再用综合指标w=x+y+z的值评定学生的数学核心素养:若w≥7,则数学核心素养为一级;若5≤w≤6,则数学核心素养为二级;若3≤w≤4,则数学核心素养为三级.为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下结果:
学生编号
A1
A2
A3
A4
A5
(x,y,z)
(2,2,3)
(3,2,2)
(3,3,3)
(1,2,2)
(2,3,2)
学生编号
A6
A7
A8
A9
A10
(x,y,z)
(2,3,3)
(2,2,2)
(2,3,3)
(2,1,1)
(2,2,2)
(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为a,从数学核心素养等级不是一级的学生中任取一人,其综合指标为b,记随机变量X=a-b,求随机变量X的分布列及期望.
解 (1)由题意可知,建模能力指标为1的学生是A9;建模能力指标为2的学生是A2,A4,A5,A7,A10;建模能力指标为3的学生是A1,A3,A6,A8.
记“所取的两人的建模能力指标相同”为事件A,
则P(A)==.
(2)由题意可知,数学核心素养等级是一级的有A1,A2,A3,A5,A6,A8,数学核心素养等级不是一级的有A4,A7,A9,A10.
X的所有可能取值为1,2,3,4,5.
P(X=1)==;
P(X=2)==;
P(X=3)==;
P(X=4)==;
P(X=5)==.
∴随机变量X的分布列为
X
1
2
3
4
5
P
∴E(X)=1×+2×+3×+4×+5×=.
15.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=2,则随机变量ξ的期望是________.
答案
解析 ξ的可能取值为0,,1,2,则
P(ξ=0)==,
P(ξ=)==,
P(ξ=1)==,
P(ξ=2)==.
∴ξ的分布列为
ξ
0
1
2
P
∴E(ξ)=0×+×+1×+2×=.
16.设0