- 637.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题45直线及其方程
1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;
2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;
3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
1.直线的倾斜角与斜率
(1)直线的倾斜角
①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;②规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π).
(2)直线的斜率
①定义:当直线l的倾斜角α≠时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan__α;
②斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=.
2.直线方程的五种形式
名称
几何条件
方程
适用条件
斜截式
纵截距、斜率
y=kx+b
与x轴不垂直的直线
点斜式
过一点、斜率
y-y0=k(x-x0)
两点式
过两点
=
与两坐标轴均不垂直的直线
截距式
纵、横截距
+=1
不过原点且与两坐标轴均不垂直的直线
一般式
Ax+By+C=0(A2+B2≠0)
所有直线
3.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1P2的中点M的坐标为(x,y),则此公式为线段P1P2的中点坐标公式.
高频考点一 直线的倾斜角与斜率
例1、(1)直线2xcos α-y-3=0的倾斜角的取值范围是( )
A. B.
C. D.
(2)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为________.
解析 (1)直线2xcos α-y-3=0的斜率k=2cos α,
因为α∈,所以≤cos α≤,
因此k=2·cos α∈[1,].
设直线的倾斜角为θ,则有tan θ∈[1,].
又θ∈[0,π),所以θ∈,
即倾斜角的取值范围是.
(2)如图,∵kAP==1,
kBP==-,
∴直线l的斜率k∈(-∞,-]∪[1,+∞).
答案 (1)B (2)(-∞,-]∪[1,+∞)
【方法规律】(1)①任一直线都有倾斜角,但斜率不一定都存在;直线倾斜角的范围是[0,π),斜率的取值范围是R.
②正切函数在[0,π)不单调,借助图象或单位圆数形结合,确定倾斜角α的取值范围.
(2)第(2)问求解要注意两点:①斜率公式的正确计算;②数形结合写出斜率的范围,
切莫错误想当然认为-≤k≤1.
【变式探究】 (1)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率k的取值范围是( )
A.-1或k<-1 D.k>或k<-1
(2)直线l经过点A(3,1),B(2,-m2)(m∈R)两点,则直线l的倾斜角α的取值范围是________.
高频考点二 求直线的方程
例2、根据所给条件求直线的方程:
(1)直线过点(-4,0),倾斜角的正弦值为;
(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;
(3)直线过点(5,10),且到原点的距离为5.
解 (1)由题设知,该直线的斜率存在,故可采用点斜式.
设倾斜角为α,则sin α=(0≤α<π),
从而cos α=±,则k=tan α=±.
故所求直线方程为y=±(x+4).
即x+3y+4=0或x-3y+4=0.
(2)由题设知纵横截距不为0,设直线方程为+=1,
又直线过点(-3,4),
从而+=1,解得a=-4或a=9.
故所求直线方程为4x-y+16=0或x+3y-9=0.
(3)当斜率不存在时,所求直线方程为x-5=0满足题意;
当斜率存在时,设其为k,
则所求直线方程为y-10=k(x-5),
即kx-y+10-5k=0.
由点线距离公式,得=5,解得k=.
故所求直线方程为3x-4y+25=0.
综上知,所求直线方程为x-5=0或3x-4y+25=0.
【方法规律】根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性.
【举一反三】 求适合下列条件的直线方程:
(1)经过点P(4,1),且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;
(3)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.
(2)由已知:设直线y=3x的倾斜角为α ,则所求直线的倾斜角为2α.
∵tan α=3,∴tan 2α==-.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-(x+1),
即3x+4y+15=0.
(3)由题意可知,所求直线的斜率为±1.
又过点(3,4),由点斜式得y-4=±(x-3).
所求直线的方程为x-y+1=0或x+y-7=0.
高频考点三 直线方程的综合应用
例3、已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,如图所示,求
△ABO的面积的最小值及此时直线l的方程.
解 方法一 设直线方程为+=1 (a>0,b>0),
点P(3,2)代入得+=1≥2 ,得ab≥24,
从而S△AOB=ab≥12,当且仅当=时等号成立,这时k=-=-,从而所求直线方程为2x+3y-12=0.
方法二 依题意知,直线l的斜率k存在且k<0.
则直线l的方程为y-2=k(x-3) (k<0),
且有A,B(0,2-3k),
∴S△ABO=(2-3k)
=
≥
=×(12+12)=12.
当且仅当-9k=,即k=-时,等号成立.
即△ABO的面积的最小值为12.
故所求直线的方程为2x+3y-12=0.
【变式探究】已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a的值.
解 由题意知直线l1,l2恒过定点P(2,2),直线l1的纵截距为2-a,直线l2的横截距为a2+2,所以四边形的面积S=×2×(2-a)+×2×(a2+2)=a2-a+4=2+,当a=时,面积最小.
【感悟提升】与直线方程有关问题的常见类型及解题策略
(1)
求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用基本不等式求解最值.
(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.
(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.
【变式探究】(1)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是.
(2)(2015·安徽)在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为.
答案 (1)5 (2)-
(2)∵|x-a|≥0恒成立,∴要使y=2a与y=|x-a|-1只有一个交点,必有2a=-1,解得a=-.
1.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为( )
(A) (B) (C) (D)1
【答案】C
【解析】设(不妨设),则
,故选C.
1.【2015高考山东,理9】一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为( )
(A)或 (B) 或 (C)或 (D)或
【答案】D
【解析】由光的反射原理知,反射光线的反向延长线必过点 ,设反射光线所在直线的斜率为 ,则反身光线所在直线方程为: ,即:.
又因为光线与圆相切, 所以, ,
整理: ,解得: ,或 ,故选D.
1.(2014·湖北卷)设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为Mf(a,b),例如,当f(x)=1(x>0)时,可得Mf(a,b)=c=,即Mf(a,b)为a,b的算术平均数.
(1)当f(x)=________(x>0)时,Mf(a,b)为a,b的几何平均数;
(2)当f(x)=________(x>0)时,Mf(a,b)为a,b的调和平均数.
(以上两空各只需写出一个符合要求的函数即可)
【答案】(1) (2)x(或填(1)k1;(2)k2x,其中k1,k2为正常数)
【解析】设A(a,f(a)),B(b,- f(b)),C(c,0),则此三点共线:
(1)依题意,c=,则=,
即=.
因为a>0,b>0,所以化简得=,故可以选择f(x)=(x>0);
(2)依题意,c=,则=,因为a>0,b>0,所以化简得=,故可以选择f(x)=x(x>0).
2.(2014·江西卷)如图17所示,已知双曲线C:-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).
图17
(1)求双曲线C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线l:-y0y=1与直线AF相交于点M,与直线x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.
(2)由(1)知a=,则直线l的方程为-y0y=1(y0≠0),即y=(y0≠0).
因为直线AF的方程为x=2,所以直线l与AF的交点为M,直线l与直线x=的交点为N,,
则===
·.
又P(x0,y0)是C上一点,则-y=1,
代入上式得=·=·=,所以==,为定值.
3.(2014·四川卷)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程.
(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.
①证明:OT平分线段PQ(其中O为坐标原点);
②当最小时,求点T的坐标.
【解析】解:(1)由已知可得
解得a2=6,b2=2,
所以椭圆C的标准方程是+=1.
(2)①证明:由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m),
则直线TF的斜率kTF==-m.
当m≠0时,直线PQ的斜率kPQ=.直线PQ的方程是x=my-2.
当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.
设P(x1,y1),Q(x2, y2),将直线PQ的方程与椭圆C的方程联立,得
消去x,得(m2+3)y2-4my-2=0,
其判别式Δ=16m2+8(m2+3)>0.
所以y1+y2=,y1y2=,
x1+x2=m(y1+y2)-4=.
设M为PQ的中点,则M点的坐标为.
所以直线OM的斜率kOM=-,
又直线OT的斜率kOT=-,
所以点M在直线OT上,
因此OT平分线段PQ.
②由①可得,
|TF|=,
|PQ|=
=
=
=.
所以==
≥=.
当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.
故当最小时,T点的坐标是(-3,1)或(-3,-1).
1.直线x-y+a=0(a为常数)的倾斜角为( )
A.30° B.60° C.120° D.150°
解析 直线的斜率为k=tan α=,又因为0°≤α<180°,所以α=60°.
答案 B
2.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则直线l的方程是( )
A.x+y-2=0 B.x-y+2=0
C.x+y-3=0 D.x-y+3=0
解析 圆x2+(y-3)2=4的圆心为点(0,3),又因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l:y-3=x-0,化简得x-y+3=0.
答案 D
3.直线x+(a2+1)y+1=0的倾斜角的取值范围是( )
A. B.
C.∪ D.∪
解析 ∵直线的斜率k=-,∴-1≤k<0,则倾斜角的范围是.
答案 B
4.经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线l的方程是( )
A.6x-4y-3=0 B.3x-2y-3=0
C.2x+3y-2=0 D.2x+3y-1=0
5.若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为( )
A. B.- C.- D.
解析 依题意,设点P(a,1),Q(7,b),则有解得
a=-5,b=-3,从而可知直线l的斜率为=-.
答案 B
6.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是( )
解析 当a>0,b>0时,-a<0,-b<0.选项B符合.
答案 B
7.已知直线l的斜率为,在y轴上的截距为另一条直线x-2y-4=0的斜率的倒数,则直线l的方程为( )
A.y=x+2 B.y=x-2
C.y=x+ D.y=-x+2
解析 ∵直线x-2y-4=0的斜率为,
∴直线l在y轴上的截距为2,∴直线l的方程为y=x+2,故选A.
答案 A
8.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴、y轴上的截距之和的最小值为( )
A.1 B.2 C. 4 D.8
解析 ∵直线ax+by=ab(a>0,b>0)过点(1,1),
∴a+b=ab,即+=1,
∴a+b=(a+b)=2++≥2+2=4,
当且仅当a=b=2时上式等号成立.
∴直线在x轴,y轴上的截距之和的最小值为4.
答案 C
9.已知三角形的三个顶点A(-5,0,),B(3,-3),C(0,2),则BC边上中线所在的直线方程为________.
解析 BC的中点坐标为,∴BC边上中线所在直线方程为=,即x+13y+5=0.
答案 x+13y+5=0
10.若直线l的斜率为k,倾斜角为α,而α∈∪,则k的取值范围是________.
11.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为____________.
解析 ①若直线过原点,则k=-,
所以y=-x,即4x+3y=0.
②若直线不过原点,设直线方程为+=1,
即x+y=a.则a=3+(-4)=-1,
所以直线的方程为x+y+1=0.
答案 4x+3y=0或x+y+1=0
12.直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.
解析 直线l的方程变形为a(x+y)-2x+y+6=0,
由解得x=2,y=-2,
所以直线l恒过定点(2,-2).
答案 (2,-2)
13.已知直线l过坐标原点,若直线l与线段2x+y=8(2≤x≤3)有公共点,则直线l的斜率的取值范围是________.
解析 设直线l与线段2x+y=8(2≤x≤3)的公共点为P(x,y).
则点P(x,y)在线段AB上移动,且A(2,4),B(3,2),
设直线l的斜率为k.
又kOA=2,kOB=.
如图所示,可知≤k≤2.
∴直线l的斜率的取值范围是.
答案
14.在平面直角坐标系xOy中,设A是半圆O:x2+y2=2(x≥0)上一点,直线OA的倾斜角为45°,过点A作x轴的垂线,垂足为H,过H作OA的平行线交半圆于点B,则直线AB的方程是________.