• 733.50 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教B版参数范围与最值,不等建解不宜迟学案

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎【题型综述】‎ 参数范围与最值问题解题策略一般有以下几种:‎ (1) 几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质构造含参数的不等式,通过解不等式解出参数的范围和最值.‎ ‎(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;‎ ‎②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;‎ ‎③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;‎ ‎④利用基本不等式求出参数的取值范围;‎ ‎⑤利用函数的值域的求法,确定参数的取值范围.‎ 参数的范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数的不等式,通过解不等式求出参数的范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.*‎ ‎【典例指引】‎ 类型一 参数范围问题 例1 【2016高考江苏卷】(本小题满分16分)如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.‎ ‎(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;‎ ‎(2)设平行于的直线与圆相交于两点,且,求直线的方程;‎ ‎(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。‎ ‎【解析】圆M的标准方程为,所以圆心M(6,7),半径为5,.‎ ‎(1)由圆心在直线x=6上,可设.因为N与x轴相切,与圆M外切,‎ 所以,于是圆N的半径为,从而,解得.‎ 因此,圆N的标准方程为.‎ ‎(2)因为直线l||OA,所以直线l的斜率为.‎ 设直线l的方程为y=2x+m,即2x-y+m=0,‎ 则圆心M到直线l的距离 ‎ ‎ 因为 ‎ 而 ‎ 所以,解得m=5或m=-15.‎ 故直线l的方程为2x-y+5=0或2x-y-15=0.‎ 所以 解得.‎ 因此,实数t的取值范围是. ‎ 类型二 方程中参数范围问题 例2.【2016高考江苏卷】(本小题满分10分)‎ 如图,在平面直角坐标系xOy中,已知直线,抛物线 ‎(1)若直线l过抛物线C的焦点,求抛物线C的方程;‎ ‎(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.‎ ‎①求证:线段PQ的中点坐标为;‎ ‎②求p的取值范围.‎ ‎【解析】(1)抛物线的焦点为 由点在直线上,得,即 所以抛物线C的方程为 因为P 和Q是抛物线C上的相异两点,所以 从而,化简得.‎ 方程(*)的两根为,从而 因为在直线上,所以 因此,线段PQ的中点坐标为 ‎②因为在直线上 所以,即 由①知,于是,所以 因此的取值范围为……‎ 类型三 斜率范围问题 例3【2016高考天津理数】(本小题满分14分)设椭圆()的右焦点为,右顶点为 ‎,已知,其中 为原点,为椭圆的离心率.‎ ‎(1)求椭圆的方程;‎ ‎(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.‎ ‎【解析】(1)设,由,即,可得,又,所以,因此,所以椭圆的方程为.‎ 由(Ⅰ)知,,设,有,.由,得,所以,解得.因此直线的方程为.‎ 设,由方程组消去,解得.在中,,即,化简得,即,解得或.‎ 所以,直线的斜率的取值范围为.‎ 类型四 离心率的范围问题 例4.【2016高考浙江理数】(本题满分15分)如图,设椭圆(a>1).‎ ‎(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);‎ ‎(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.‎ ‎【解析】(1)设直线被椭圆截得的线段为,由得 ‎,‎ 故,.‎ 因此.‎ 由于,,得 ‎,‎ 因此, ①‎ 因为①式关于,的方程有解的充要条件是 ‎,所以.‎ 因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,‎ 由得,所求离心率的取值范围为.‎ ‎【扩展链接】‎ ‎1.若椭圆方程为,半焦距为,焦点,设 过的直线 的倾斜角为,交椭圆于A、B两点,则有:①‎ ‎ ;②‎ 若椭圆方程为,半焦距为,焦点,设 过的直线 的倾斜角为,交椭圆于A、B两点,则有:①‎ ‎ ;②‎ 同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距)‎ 结论:椭圆过焦点弦长公式:‎ ‎2.过椭圆左焦点的焦点弦为,则;过右焦 点的弦.*‎ 3. 抛物线与直线相交于且该直线与轴交于点,则有.‎ ‎4.设为过抛物线焦点的弦,,直线的倾斜角为,则 ‎①. ‎ ‎②. ‎ ‎③.‎ ‎④.;‎ ‎⑤.;‎ ‎⑥.;‎

相关文档