• 78.00 KB
  • 2021-06-16 发布

【数学】2019届一轮复习人教A版离散型随机变量及其分布列学案

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
离散型随机变量及其分布列 ‎【考点梳理】‎ ‎1.离散型随机变量 随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.‎ ‎2.离散型随机变量的分布列及性质 ‎(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则表 X x1‎ x2‎ ‎…‎ xi ‎…‎ xn P p1‎ p2‎ ‎…‎ pi ‎…‎ pn 称为离散型随机变量X的概率分布列.‎ ‎(2)离散型随机变量的分布列的性质:‎ ‎①pi≥0(i=1,2,…,n);②p1+p2+…+pn=1.‎ ‎3.常见离散型随机变量的分布列 ‎(1)两点分布:若随机变量X服从两点分布,其分布列为 X ‎0‎ ‎1‎ P ‎1-p p ‎,其中p=P(X=1)称为成功概率.‎ ‎(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X= )=, =0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N ,称随机变量X服从超几何分布.‎ X ‎0‎ ‎1‎ ‎…‎ m P ‎…‎ ‎【考点突破】‎ 考点一、离散型随机变量分布列的性质 ‎【例1】(1)设X是一个离散型随机变量,其分布列为:‎ X ‎-1‎ ‎0‎ ‎1‎ P ‎2-3q q2‎ 则q的值为(  )‎ A.1 B.± C.- D.+ ‎(2)离散型随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P的值为(  )‎ A. B. C. D. ‎[答案] (1) C (2) D ‎[解析] (1)由分布列的性质知 ‎∴q=-.‎ ‎(2)由×a=1,知a=1.∴a=.‎ 故P=P(X=1)+P(X=2)=×+×=.‎ ‎【类题通法】‎ 分布列性质的两个作用 ‎(1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性.‎ ‎(2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.‎ ‎【对点训练】‎ ‎1.设随机变量X的分布列如下:‎ X ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ P p 则p为(  )‎ A. B. C. D. ‎[答案] C ‎[解析] 由分布列的性质,++++p=1,∴p=1-=.‎ ‎2.已知随机变量X的分布列为:P(X= )=, =1,2,…,则P(2