- 78.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
离散型随机变量及其分布列
【考点梳理】
1.离散型随机变量
随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.
2.离散型随机变量的分布列及性质
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则表
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
称为离散型随机变量X的概率分布列.
(2)离散型随机变量的分布列的性质:
①pi≥0(i=1,2,…,n);②p1+p2+…+pn=1.
3.常见离散型随机变量的分布列
(1)两点分布:若随机变量X服从两点分布,其分布列为
X
0
1
P
1-p
p
,其中p=P(X=1)称为成功概率.
(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X= )=, =0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N ,称随机变量X服从超几何分布.
X
0
1
…
m
P
…
【考点突破】
考点一、离散型随机变量分布列的性质
【例1】(1)设X是一个离散型随机变量,其分布列为:
X
-1
0
1
P
2-3q
q2
则q的值为( )
A.1 B.± C.- D.+
(2)离散型随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P的值为( )
A. B. C. D.
[答案] (1) C (2) D
[解析] (1)由分布列的性质知
∴q=-.
(2)由×a=1,知a=1.∴a=.
故P=P(X=1)+P(X=2)=×+×=.
【类题通法】
分布列性质的两个作用
(1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性.
(2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.
【对点训练】
1.设随机变量X的分布列如下:
X
1
2
3
4
5
P
p
则p为( )
A. B. C. D.
[答案] C
[解析] 由分布列的性质,++++p=1,∴p=1-=.
2.已知随机变量X的分布列为:P(X= )=, =1,2,…,则P(2