- 703.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
简单的逻辑联结词
【学习目标】
1.了解逻辑联结词“或”、“且”、“非”的含义;
2. 会用逻辑联结词“或”、“且”、“非”联结两个命题或改写某些数学命题,并判断命题的真假.
【要点梳理】
要点一、逻辑联结词“且”
一般地,用逻辑联结词“且”把命题和联结起来得到一个新命题,记作:,读作:“且”。
规定:当,两命题有一个命题是假命题时,是假命题;
当,两命题都是真命题时,是真命题。
要点诠释:
的真假判定的理解:
(1)与物理中的电路类比
我们可以从串联电路理解联结词“且”的含义。
若开关p,q的闭合与断开分别对应命题p,q的真与假,则整个电路的接通与断开分别对应命题p∧q的真与假。
(2)与集合中的交集类比
交集中的“且”与逻辑联结词的“且”含义一样,理解时可参考交集的概念。
要点二、逻辑联结词“或”
一般地,用逻辑联结词“或”把命题和联结起来得到一个新命题,记作:,读作:“或”。
规定:当,两命题有一个命题是真命题时,是真命题;
当,两命题都是假命题时,是假命题。
要点诠释:
的真假判定的理解:
(1)与物理中的电路类比
我们可以从并联电路理解联结词“或”的含义。
若开关p,q的闭合与断开对应命题的真与假,则整个电路的接通与断开分别对应命题的p∨q的真与假。
q
p
(2)与集合中的并集类比
并集中的“或”与逻辑联结词的“或”含义一样,理解时可参考并集的概念。
(3)“或”有三层含义,以“p或q”为例:
①p成立且q不成立;
②p不成立但q成立;
③p成立且q也成立。
要点三、逻辑联结词“非”
一般地,对一个命题全盘否定得到一个新命题,记作:,读作:“非或的否定”。
规定:当是真命题时,必定是假命题;
当是假命题时,必定是真命题。
要点诠释:
(1)逻辑联结词中的“非”相当于集合中补集的概念,谈到补集必然要说全集,谈论“非”时也应该弄清这件事是在一个什么样的范围中研究。
(2)下面是一些常用词的否定:
是
等于
属于
有
都是
至少
一个
至多
一个
一定
x=1或x=2
x>1且x<3
不是
不等于
不属于
没有
不都是
一个
都没
有
至少
两个
一定不
x≠1且x≠2
x≤1或x≥3
(3)否命题与命题的否定之间的区别:
否命题是对原命题的条件和结论分别做否定后得到的命题(否定二次);命题的否定是只对原命题的结论做否定(否定一次),即.如:
命题: 若,则.
命题的否命题:若,则.
命题的否定即:若,则.
(4)“或”、“且”联结的命题的否定形式:
“p或q”的否定;
“p且q”的否定
要点四、简单命题与复合命题
(1)定义:
简单命题:不含逻辑联结词的命题叫简单命题。
复合命题:由简单命题与逻辑联结词“或”、“且”、“非”构成的命题叫做复合命题。
(2)复合命题的构成形式:
①p或q;记作:
②p且q;记作:
③非p(即命题p的否定);记作:
(3)复合命题的真假判断
真
真
假
真
真
真
假
假
真
假
假
真
真
真
假
假
假
真
假
假
要点诠释:
①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;
②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。
③“非p”与p的真假相反.
【典型例题】
类型一:复合命题的构成
例1.分别指出下列复合命题的形式及构成的简单命题。
(1) 李明是老师,赵山也是老师;
(2) 1是合数或质数;
(3) 他是运动员兼教练员;
【解析】
(1)这个命题是“且”形式,其中p:李明是老师,q:赵山是老师。
(2)这个命题是“或”形式,其中p:1是合数,q:1是质数。
(3)这个命题是“且”形式,其中p:他是运动员,q:他是教练员。
【总结升华】正确理解逻辑联结词“或”、“且”、“非”的含义是解题的关键。根据上述各复合命题中出现的逻辑联结词或语句的意义确定复合命题的形式。
举一反三:
【高清课堂:简单的逻辑联结词395484例1】
【变式1】例1 将下列各组命题用“且”联结组成新命题:
(1)p:平行四边形的对角线互相平分,
q:平行四边形的对角线相等;
(2)p:集合A是AB的子集,
q:集合A是AB的子集;
(3)p:,
q:3>4.
【答案】
(1)p∧q:平行四边形的对角线互相平分且相等;
(2)p∧q:集合A是AB的子集,且是AB的子集;
(3)p∧q:,且3>4.
【变式2】判断下列复合命题的形式,写出构成其的简单命题
(1)1是奇数或偶数;
(2)梯形不是平行四边形;
(3)2是偶数也是质数.
【答案】
(1)或的形式,其中:1是奇数,:1是偶数;
(2)非的形式,其中:梯形是平行四边形;
(3)且的形式,其中:2是偶数,:2是质数。
【变式3】(2015秋 福建校级期末)在一次跳高比赛前,甲、乙两名运动员各试跳了一次。设命题p表示“甲的试跳成绩超过2米”,命题q表示“乙的试跳成绩超过2米”,则命题p∨q表示( )
A.甲、乙恰有一人的试跳成绩没有超过2米
B.甲、乙至少有一人的试跳成绩没有超过2米
C.甲、乙两人的试跳成绩都没有超过2米
D.甲、乙至少有一人的试跳成绩超过2米、
【答案】∵命题p表示“甲的试跳成绩超过2米”,命题q表示“乙的试跳成绩超过2米”,
则命题p∨q表示:甲、乙至少有一人的试跳成绩超过2米,
故选D。
例2.判断下列命题中是否含有逻辑联结词“或”、“且”、“非”,若含有,请指出其中p、q的基本命题.
(1) 正方形的对角线垂直相等;
(2) 2是4和6的约数;
(3) 不等式的解为
【解析】(1)是“且”形式的命题,其中p:正方形的对角线互相垂直;q:正方形的对角线相等.
(2)是“且”形式的命题,其中p:2是4的约数;q:2是6的约数.
(3)是简单命题,而不是用“或”联结的复合命题
【总结升华】对于用逻辑联结词“或”、“且”、“非”联结的新命题的结构特点不能仅从字面上看它是否含有“或”、“且”、“非”等逻辑联结词,而应从命题的结构来看是否用逻辑联结词联结两个命题.
举一反三:
【变式】分别指出下列复合命题的形式及构成的简单命题。
(1) 李明是老师,赵山也是老师;
(2) 1是合数或质数;
(3) 他是运动员兼教练员;
【答案】
(1)这个命题是“且”形式,其中p:李明是老师,q:赵山是老师。
(2)这个命题是“或”形式,其中p:1是合数,q:1是质数。
(3)这个命题是“且”形式,其中p:他是运动员,q:他是教练员。
例3.分别指出下列复合命题的形式及构成它的简单命题,并指出复合命题的真假.
(1) 8或6是30的约数
(2) 矩形的对角线互相垂直平分
(3) 方程x2+x+1=0无实根
【解析】
(1) “p或q”形式.
p: 8是30的约数,q: 6是30的约数,
∵p假q真,∴该复合命题为真.
(2)“p且q”形式.
p:矩形的对角线互相垂直,q:矩形的对角线互相平分,
∵p假q真,∴该复合命题为假.
(3)“非p”形式.
p: 方程x2+x+1=0有实根,
∵p假,∴该复合命题为真.
【总结升华】 先判断各简单命题的真假,再依据复合命题的构成形式写出复合命题,最后判断复合命题的真假.
举一反三:
【变式1】已知命题、,试写出或、且、非的形式的命题并判断真假.
(1) :平行四边形的一组对边平行,:平行四边形的一组对边相等
(2) :,:
(3) :, :
【答案】
(1)或:平行四边形的一组对边平行或相等(真命题);
且:平行四边形的一组对边平行且相等(真命题);
非:平行四边形的一组对边不平行(假命题)。
(2)或:或,即(真命题)
且:且(假命题)
非:(真命题)
(3)或:或(真命题)
且:且(真命题)
非:(假命题)
【变式2】已知命题、,写出或、且、非的形式并判断真假。
(1): , :.
(2): , :
【答案】
(1)或:或,即(真命题),
且:且(假命题),
非():(真命题),
(2)或:或,即(真命题),
且:且(假命题),
非():,即(假命题).
类型二:复合命题真假的判定
例4.(2015 辽宁)设是非零向量,已知命题p:若=0,=0,则=0;命题q:若,则,则下列命题中真命题是( )
A. p∨q B. p∧q
C. (¬p)∧(¬q) D. p∨(¬q)
【答案】B.
【解析】若=0,=0,则=,即 ,则=0不一定成立,故命题p为假命题,
若,则平行,故命题q为真命题,
则p∨q为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,
故选:A.
【总结升华】解答这类逻辑推理问题关键在于充分利用真值表进行分析,也就是由给出复合命题的真假情况,利用真值表逆向思考,从而推断出组成复合命题的简单命题的真值情况,再判断相关命题正确与否.
举一反三:
【高清课堂:简单的逻辑联结词395484 例5】
【变式1】已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,
则下列命题为真命题的是( )
(A)(¬p)∨q (B) p∧q
(C)(¬p)∨(¬q) (D)(¬p)∧(¬q)
【答案】C
【变式2】已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )
A. p∧q B. ¬p∧¬q C. ¬p∧q D. p∧¬q
【解析】根据指数函数的性质可知,对任意x∈R,总有2x>0成立,即p为真命题,
“x>1”是“x>2”的必要不充分条件,即q为假命题,
则p∧¬q,为真命题,
故选:D.
【变式3】以下判断中正确的是( )
A.命题p是真命题时,命题“”一定是真命题
B.命题“”为真命题时,命题p一定是真命题
C.命题“”为假命题时,命题p一定是假命题
D.命题P是假命题时,命题“”不一定是假命题
【答案】B
类型三:命题的否定与否命题
例5.写出下列命题的否定和否命题,并判定其真假.
(1):在整数范围内,、都是偶数,则是偶数
(2):若且,则.
【解析】
(1) :在整数范围内,、都是偶数,则不是偶数(假命题);
的否命题是:在整数范围内,若、不都是偶数,则不是偶数(假命题);
(2) :若且,则(假命题);
的否命题是:若或,则(假命题).
【总结升华】
①“且”的否定是“或”;“ 、都是偶数"的否定为“、不都是偶数”.
② 命题的否定和否命题是不一样的.
举一反三:
【变式1】命题“ΔABC是直角三角形或等腰三角形“的否定是 ;
【答案】ΔABC既不是直角三角形,也不是等腰三角形.
【变式2】写出下列命题的否定和否命题,并判定其真假.
(1):若,则,全为零;
(2):若且,则.
【答案】
(1)的否定:若,则,不全为零(假命题);
的否命题:若,则,不全为零(真命题);
(2)的否定:若且,则(假命题);
的否命题:若或,则(假命题).
【变式3】 “”是指 (填出符合条件的所有选项)
A.且 B.或 C.,至少有一个不是0
D.,都不是0 E. ,不都是0
【答案】B、C 、E;
【解析】是指,不同时为零,即,至少有一个不是0,亦即,不都是0,或.
类型四:复合命题的应用
例6.已知命题p:x2-5x+6≥0;命题q:0