- 113.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
集合
【考点梳理】
1.元素与集合
(1)集合中元素的三个特性:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.
(3)集合的三种表示方法:列举法、描述法、Venn图法.
2.集合间的基本关系
(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.
(2)真子集:若A⊆B,但集合B中至少有一个元素不属于集合A,则AB或BA.
(3)相等:若A⊆B,且B⊆A,则A=B.
(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.
3.集合的基本运算
并集
交集
补集
图形表示
符号表示
A∪B
A∩B
∁UA
意义
{x|x∈A或x∈B}
{x|x∈A且x∈B}
{x|x∈U且x∉A}
4.集合关系与运算的常用结论
(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.
(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.
(3)A⊆B⇔A∩B=A⇔A∪B=B.
(4)∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
【考点突破】
考点一、集合的基本概念
【例1】(1) 已知集合M={1,2},N={3,4,5},P={x|x=a+b,a∈M,b∈N},则集合P的元素个数为( )
A.3 B.4
C.5 D.6
(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=( )
A. B.
C.0 D.0或
[答案] (1) B (2) D
[解析] (1) 因为a∈M,b∈N,所以a=1或2,b=3或4或5.当a=1时,若b=3,则x=4;若b=4,则x=5;若b=5,则x=6.同理,当a=2时,若b=3,则x=5;若b=4,则x=6;若b=5,则x=7,由集合中元素的特性知P={4,5,6,7},则P中的元素共有4个.
(2)若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.
当a=0时,x=,符合题意;
当a≠0时,由Δ=(-3)2-8a=0得a=,
所以a的取值为0或.
【类题通法】
与集合中的元素有关的解题策略
(1)确定集合中的代表元素是什么,即集合是数集还是点集.
(2)看这些元素满足什么限制条件.
(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.
【对点训练】
1. 已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )
A.3 B.2
C.1 D.0
[答案] B
[解析] 因为A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y=x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.
2. 已知集合A={x∈R|ax2+3x-2=0},若A=∅,则实数a的取值范围为________.
[答案]
[解析] ∵A=∅,∴方程ax2+3x-2=0无实根,
当a=0时,x=不合题意;
当a≠0时,Δ=9+8a<0,∴a<-,故实数a的取值范围为.
考点二、集合间的基本关系
【例2】(1) 已知集合A={x|x2-3x+2=0,x∈R},B={x|00时,∵A={x|-10},则集合A与B的关系是( )
A.B⊆A B.B⊇A
C.B∈A D.A∈B
[答案] A
[解析] 因为A={x|-x2-x+2<0}={x|x>1或x<-2},B={x|2x-5>0}=.
在数轴上标出集合A与集合B,如图所示,
可知,B⊆A.
2.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是________.
[答案] (-∞,4]
[解析] 当B=∅时,有m+1≥2m-1,则m≤2.
当B≠∅时,若B⊆A,如图.
则
解得2<m≤4.
综上,m的取值范围为(-∞,4].
考点三、集合的基本运算
【例3】(1) 已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( )
A.1 B.2
C.3 D.4
(2) 已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈ },则A∪B=( )
A.{1} B.{1,2}
C.{0,1,2,3} D.{-1,0,1,2,3}
(3) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )
A.{x|x≥0} B.{x|x≤1}
C.{x|0≤x≤1} D.{x|00},B={x|-2≤x≤2},则如图所示阴影部分所表示的集合为( )
A.{x|-2≤x<4} B.{x|x≤2或x≥4}
C.{x|-2≤x≤-1} D.{x|-1≤x≤2}
[答案] (1) B (2) C (3) D (4) D
[解析] (1) A,B两集合中有两个公共元素2,4,故选B.
(2)因为B={x|(x+1)(x-2)<0,x∈ }={x|-14},因此∁RA={x|-1≤x≤4},题中的阴影部分所表示的集合为(∁RA)∩B={x|-1≤x≤2},故选D.
【类题通法】
1.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.
2.集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.
【对点训练】
3.(1) 设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )
A.{1,3} B.{3,5}
C.{5,7} D.{1,7}
(2) 设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )
A.(-1,1) B.(0,1)
C.(-1,+∞) D.(0,+∞)
(3) 设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )
A.{2,6} B.{3,6}
C.{1,3,4,5} D.{1,2,4,6}
(4) 集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是( )
A.{x|x≥1} B.{x|1≤x<2}
C.{x|00,则A=(0,+∞).
又B={x|x2-1<0}=(-1,1).
因此A∪B=(-1,+∞).
(3) ∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},
又全集U={1,2,3,4,5,6},因此∁U(A∪B)={2,6}.
(4) 易知A=(-1,2),B=(-∞,1),∴∁UB=[1,+∞),A∩(∁UB)=[1,2).因此阴影部分表示的集合为A∩(∁UB)={x|1≤x<2}.