• 351.00 KB
  • 2021-06-16 发布

【数学】2019届一轮复习人教A版理第7章第3节 空间点、直线、平面之间的位置关系教案

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第三节 空间点、直线、平面之间的位置关系 ‎[考纲传真] (教师用书独具)1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.‎ ‎(对应学生用书第109页)‎ ‎[基础知识填充]‎ ‎1.平面的基本性质 ‎(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.‎ ‎(2)公理2:过不在一条直线上的三点,有且只有一个平面.‎ ‎(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.‎ ‎2.空间点、直线、平面之间的位置关系 直线与直线 直线与平面 平面与平面 平行关系 图形 语言 符号 语言 a∥b a∥α α∥β 相交关系 图形 语言 符号 语言 a∩b=A a∩α=A α∩β=l 图形 语言 独有关系 符号 a,b是异面 a⊂α 语言 直线 ‎3.平行公理(公理4)和等角定理 平行公理:平行于同一条直线的两条直线互相平行.‎ 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.‎ ‎4.异面直线所成的角 ‎(1)定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角.‎ ‎(2)范围:.‎ ‎[知识拓展]‎ ‎1.唯一性定理 ‎(1)过直线外一点有且只有一条直线与已知直线平行.‎ ‎(2)过直线外一点有且只有一个平面与已知直线垂直.‎ ‎(3)过平面外一点有且只有一个平面与已知平面平行.‎ ‎(4)过平面外一点有且只有一条直线与已知平面垂直.‎ ‎2.异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线.‎ ‎[基本能力自测]‎ ‎1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)‎ ‎(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(  )‎ ‎(2)两两相交的三条直线最多可以确定三个平面.(  )‎ ‎(3)如果两个平面有三个公共点,则这两个平面重合.(  )‎ ‎(4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.(  )‎ ‎[答案] (1)× (2)√ (3)× (4)×‎ ‎2.(教材改编)如图731所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为(  )‎ 图731‎ A.30°      B.45° C.60° D.90°‎ C [连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C为所求的角,又B1D1=B1C=D1C,∴∠D1B1C=60°.]‎ ‎3.在下列命题中,不是公理的是(  )‎ A.平行于同一个平面的两个平面相互平行 B.过不在同一条直线上的三点,有且只有一个平面 C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 A [A不是公理,是个常用的结论,需经过推理论证;B,C,D是平面的基本性质公理.]‎ ‎4.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是(  )‎ A.相交或平行 B.相交或异面 C.平行或异面 D.相交、平行或异面 D [依题意,直线b和c的位置关系可能是相交、平行或异面.]‎ ‎5.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 A [由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.]‎ ‎(对应学生用书第110页)‎ 平面的基本性质及应用 ‎ 如图732,正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点.求证:‎ 图732‎ ‎(1)E,C,D1,F四点共面;‎ ‎(2)CE,D1F,DA三线共点.‎ ‎[证明] (1)如图,连接EF,CD1,A1B.‎ ‎∵E,F分别是AB,AA1的中点,‎ ‎∴EF∥BA1.‎ 又∵A1B∥D1C,∴EF∥CD1,‎ ‎∴E,C,D1,F四点共面.‎ ‎(2)∵EF∥CD1,EF