• 649.00 KB
  • 2021-06-16 发布

【数学】2018届一轮复习人教A版 坐标系 学案

  • 16页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
专题60 坐标系 ‎ 1.了解在平面直角坐标系下的伸缩变换.‎ ‎2.理解极坐标的概念,能进行极坐标和直角坐标的互化.‎ ‎3.能在极坐标系中给出简单图形(直线、过极点或圆心在极点的圆)的方程.‎ ‎ ‎ 一、平面直角坐标系下的伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换 φ:的作用下,点P(x,y)对应到点P′(x′,y′),‎ 称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.‎ 平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.‎ 二、极坐标与直角坐标的互化 ‎ 设M为平面上的一点,它的直角坐标为(x,y),极坐标为(ρ,θ).由图可知下面的关系式成立:或(θ与(x,y)所在象限一致).‎ ‎【特别提醒】‎ ‎(1)在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).‎ ‎(2)在极坐标系下,点的极坐标不惟一性易忽视.‎ 注意极坐标(ρ,θ)(ρ,θ+2kπ),(-ρ,π+θ+2kπ)(k∈Z)表示同一点的坐标.‎ 三、曲线的极坐标方程 ‎1.圆的极坐标方程 ‎(1)圆心在极点,半径为R的圆的极坐标方程为ρ=R.‎ ‎(2)圆心在极轴上的点(a,0)处,且过极点O的圆的极坐标方程为ρ=2acos θ.‎ ‎(3)圆心在点处,且过极点O的圆的极坐标方程为ρ=2asin θ.‎ ‎2.直线的极坐标方程 ‎(1)过点(a,0)与极轴垂直的直线的极坐标方程为ρcos θ=a.‎ ‎(2)过点与极轴平行的直线的极坐标方程为ρsin θ=a.‎ ‎【特别提醒】‎ ‎(1)确定极坐标方程时要注意极坐标系的四要素:极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. ‎ ‎(2)研究曲线的极坐标方程往往要与直角坐标方程进行相互转化.当条件涉及“角度”和“到定点距离”时,引入极坐标系将会给问题的解决带来很大的方便.‎ 高频考点一 平面直角坐标系中的伸缩变换 ‎【例1】 将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.‎ ‎(1)求曲线C的标准方程;‎ ‎(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.‎ ‎ ‎ ‎(2)由解得或 不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为,所求直线斜率为k=,‎ 于是所求直线方程为y-1=,‎ 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,‎ 故所求直线的极坐标方程为ρ=.‎ ‎【方法规律】(1)解答该类问题应明确两点:一是根据平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P(x,y)与变换后的点P′(x′,y′)的坐标关系,用方程思想求解.‎ ‎(2)求交点坐标,得直线方程,最后化为极坐标方程,其实质是将x=ρcos θ,y=ρsin θ代入转化.‎ ‎【变式探究】 在平面直角坐标系中,已知伸缩变换φ: ‎(1)求点A经过φ变换所得点A′的坐标;‎ ‎(2)求直线l:y=6x经过φ变换后所得直线l′的方程.‎ 解 (1)设点A′(x′,y′),由伸缩变换φ: 得∴x′=×3=1,y′==-1.‎ ‎∴点A′的坐标为(1,-1).‎ ‎(2)设P′(x′,y′)是直线l′上任意一点.‎ 由伸缩变换φ:得 代入y=6x,得2y′=6·=2x′,‎ ‎∴y′=x′为所求直线l′的方程.‎ 高频考点二 极坐标与直角坐标的互化 ‎【例2】 (2016·北京卷改编)在极坐标系中,已知极坐标方程C1:ρcos θ-ρsin θ-1=0,C2:ρ=2cos θ.‎ ‎(1)求曲线C1,C2的直角坐标方程,并判断两曲线的形状;‎ ‎(2)若曲线C1,C2交于A,B两点,求两交点间的距离.‎ 解 (1)由C1:ρcos θ-ρsin θ-1=0,‎ ‎∴x-y-1=0,表示一条直线.‎ 由C2:ρ=2cos θ,得ρ2=2ρcos θ.‎ ‎∴x2+y2=2x,即(x-1)2+y2=1.‎ 所以C2是圆心为(1,0),半径r=1的圆.‎ ‎(2)由(1)知,点(1,0)在直线x-y-1=0上,‎ 所以直线C1过圆C2的圆心.‎ 因此两交点A,B的连线段是圆C2的直径.‎ 所以两交点A,B间的距离|AB|=2r=2.‎ ‎【方法规律】 (1)进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x=ρcos θ,y=ρsin θ,ρ2=x2+y2,tan θ=(x≠0).‎ ‎(2)进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧. ‎ ‎【变式探究】在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.‎ ‎(1)求C1,C2的极坐标方程;‎ ‎(2)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.‎ 高频考点三 直线与圆的极坐标方程的应用 ‎【例3】 (2016·全国Ⅰ卷)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.‎ ‎(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;‎ ‎(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.‎ 解 (1)消去t,得C1的普通方程x2+(y-1)2=a2,‎ ‎∴曲线C1表示以点(0,1)为圆心,a为半径的圆.‎ 将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.‎ ‎【方法规律】(1)第(1)题将曲线C1的参数方程先化成普通方程,再化为极坐标方程,考查学生的转化与化归能力.第(2)题中关键是理解极坐标方程的含义,消去ρ,建立与直线C3:θ=α0的联系,进而求a.‎ ‎(2)由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.‎ ‎【变式探究】 在极坐标系中,已知直线l的极坐标方程为ρsin=1,圆C的圆心的极坐标是C,圆的半径为1.‎ ‎(1)求圆C的极坐标方程;‎ ‎(2)求直线l被圆C所截得的弦长.‎ 解 (1)设O为极点,OD为圆C的直径,A(ρ,θ)为圆C上的一个动点,则∠AOD=-θ或∠AOD=θ-,‎ ‎|OA|=|OD|cos或|OA|=|OD|cos.‎ 所以圆C的极坐标方程为ρ=2cos.‎ ‎(2)由ρsin=1,得ρ(sin θ+cos θ)=1,‎ ‎∴直线l的直角坐标方程为x+y-=0,‎ 又圆心C的直角坐标为满足直线l的方程,‎ ‎∴直线l过圆C的圆心,‎ 故直线被圆所截得的弦长为直径2.‎ ‎1.【2016年高考北京理数】在极坐标系中,直线与圆交于A,B两点,则______.‎ ‎【答案】2‎ ‎【解析】直线过圆的圆心,因此 ‎2.【2016高考新课标1卷】(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xy中,曲线C1的参数方程为(t为参数,a>0).‎ 在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=.‎ ‎(I)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;‎ ‎(II)直线C3的极坐标方程为,其中满足tan=2,若曲线C1与C2的公共点都在C3上,求a.‎ ‎【答案】(I)圆,(II)1‎ ‎【解析】解:(Ⅰ)消去参数得到的普通方程.‎ 是以为圆心,为半径的圆.‎ 将代入的普通方程中,得到的极坐标方程为 ‎.‎ ‎3.【2016高考新课标2理数】选修4—4:坐标系与参数方程 在直角坐标系中,圆的方程为.‎ ‎(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;‎ ‎(Ⅱ)直线的参数方程是(为参数), 与交于两点,,求的斜率.‎ ‎【答案】(Ⅰ);(Ⅱ).‎ ‎【解析】(I)由可得的极坐标方程 ‎(II)在(I)中建立的极坐标系中,直线的极坐标方程为 由所对应的极径分别为将的极坐标方程代入的极坐标方程得 于是 由得,‎ 所以的斜率为或.‎ ‎4.【2016高考新课标3理数】(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为.‎ ‎(I)写出的普通方程和的直角坐标方程;‎ ‎(II)设点在上,点在上,求的最小值及此时的直角坐标.‎ ‎【答案】(Ⅰ)的普通方程为,的直角坐标方程为;(Ⅱ).‎ ‎【解析】(Ⅰ)的普通方程为,的直角坐标方程为. ……5分 ‎(Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,. ‎ ‎………………8分 当且仅当时,取得最小值,最小值为,此时的直角坐标为. ………………10分 ‎1.【2015高考北京,理11】在极坐标系中,点到直线的距离为 .‎ ‎【答案】1‎ ‎【解析】先把点极坐标化为直角坐标,再把直线的极坐标方程化为直角坐标方程,利用点到直线距离公式 ‎.‎ ‎2.【2015高考湖北,理16】在直角坐标系中,以O为极点,轴的正半轴为极轴建立极坐标系. 已知直线的极坐标方程为,曲线的参数方程为 ( 为参数) ,与C相交于两点,则 .‎ ‎【答案】‎ ‎【解析】因为,所以,所以,即;‎ 由消去得.联立方程组,解得或,‎ 即,,‎ 由两点间的距离公式得.‎ ‎3.【2015高考广东,理14】(坐标系与参数方程选做题)已知直线的极坐标方程为,点的极坐标为 ,则点到直线的距离为 .‎ 【答案】.‎ ‎【解析】‎ 解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,‎ 点A的极坐标为A(2,),它的直角坐标为(2,﹣2).‎ 点A到直线l的距离为:=.‎ 故答案为:.‎ ‎4.【2015高考安徽,理12】在极坐标中,圆上的点到直线距离的最大值是 .‎ ‎【答案】‎ ‎【解析】由题意,转化为普通方程为,即;直线转化为普通方程为,则圆上的点到直线的距离最大值是通过圆心的直线上半径加上圆心到直线的距离,设圆心到直线的距离为,圆的半径为,则圆上的点到直线距离的最大值.‎ ‎5.【2015高考新课标2,理23】选修4-4:坐标系与参数方程 在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.‎ ‎(Ⅰ).求与交点的直角坐标;‎ ‎(Ⅱ).若与相交于点,与相交于点,求的最大值.‎ ‎【答案】(Ⅰ)和;(Ⅱ).‎ ‎【解析】‎ ‎(Ⅰ)由,得 则解得,‎ ‎(Ⅱ)‎ 当且仅当,即时等号成立,‎ 故.‎ ‎6.【2015高考福建,理21】选修4-4:坐标系与参数方程 在平面直角坐标系中,圆C的参数方程为.在极坐标系(与平面直角坐标系取相同的长度单位,且以原点O为极点,以轴非负半轴为极轴)中,直线l的方程为 ‎(Ⅰ)求圆C的普通方程及直线l的直角坐标方程;‎ ‎(Ⅱ)设圆心C到直线l的距离等于2,求m的值.‎ ‎【答案】(Ⅰ) ,;(Ⅱ) .‎ ‎【解析】(Ⅰ)消去参数t,得到圆的普通方程为,‎ 由,得,‎ 所以直线l的直角坐标方程为.‎ ‎(Ⅱ)依题意,圆心C到直线l的距离等于2,即 解得 ‎7.【2015高考陕西,理23】选修4-4:坐标系与参数方程 在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极 轴建立极坐标系,的极坐标方程为.‎ ‎(I)写出的直角坐标方程;‎ ‎(II)为直线上一动点,当到圆心的距离最小时,求的直角坐标.‎ ‎【答案】(I);(II).‎ ‎ 1.(2014·广东卷)(坐标系与参数方程选做题)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为________.‎ ‎【答案】(1,1) ‎ ‎【解析】本题主要考查将极坐标方程化为直角坐标方程的方法.将曲线C1的方程ρsin 2θ=cos θ 化为直角坐标方程为y2=x,将曲线C2的方程ρsin θ=1化为直角坐标方程为y=1.由解得 故曲线C1和C2交点的直角坐标为(1,1).‎ ‎2.(2014·湖北卷) (选修44:坐标系与参数方程)‎ 已知曲线C1的参数方程是(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为________.‎ ‎【答案】 ‎ ‎【解析】由消去t得y=x(x≥0),即曲线C1的普通方程是y=x(x≥0);由ρ=2,得ρ2=4,得x2+y2=4,即曲线C2的直角坐标方程是x2+y2=4.联立解得 故曲线C1与C2的交点坐标为.‎ ‎3.(2014·湖南卷)在平面直角坐标系中,倾斜角为的直线l与曲线C:(α 为参数)交于A,B两点,且|AB|=2.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是________.‎ ‎【答案】ρcos θ-ρsin θ=1 ‎ ‎【解析】依题意可设直线l:y=x+b,曲线C:的普通方程为(x-2)2+(y-1)2=1.由|AB|=2可知圆心(2,1)在直线l:y=x+b上,即l:y=x-1,所以l的极坐标方程是ρcos θ-ρsin θ-1=0.‎ ‎4.(2014·辽宁卷)选修44:坐标系与参数方程 将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.‎ ‎(1)写出C的参数方程;‎ ‎(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.‎ 解:(1)设(x1,y1)为圆上的点,在已知变换下变为C上点(x,y),依题意,得由x+y=1得x2+=1,即曲线C的方程为x2+=1.‎ 故C的参数方程为(t为参数).‎ ‎(2)由解得或 不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为,所求直线的斜率k=,于是所求直线方程为y-1=,‎ 化为极坐标方程,并整理得 ‎2ρcos θ-4ρsin θ=-3,即ρ=.‎ ‎5.(2014·陕西卷)C.(坐标系与参数方程选做题)在极坐标系中,点到直线ρsin=1的距离是________.‎ ‎【答案】C.1 ‎ ‎1.在极坐标系下,已知圆O:ρ=cos θ+sin θ和直线l:ρsin=.‎ ‎(1)求圆O和直线l的直角坐标方程;‎ ‎(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.‎ 解 (1)圆O:ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,‎ 圆O的直角坐标方程为:x2+y2=x+y,‎ 即x2+y2-x-y=0,‎ 直线l:ρsin=,‎ 即ρsin θ-ρcos θ=1,‎ 则直线l的直角坐标方程为:y-x=1,即x-y+1=0.‎ ‎(2)由得 故直线l与圆O公共点的一个极坐标为.‎ ‎2.以直角坐标系中的原点O为极点,x轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=.‎ ‎(1)将曲线的极坐标方程化为直角坐标方程;‎ ‎(2)过极点O作直线l交曲线于点P,Q,若|OP|=3|OQ|,求直线l的极坐标方程.‎ 解 (1)∵ρ=,ρsin θ=y,‎ ‎∴ρ=化为ρ-ρsin θ=2,‎ ‎∴曲线的直角坐标方程为x2=4y+4.‎ ‎(2)设直线l的极坐标方程为θ=θ0(ρ∈R),‎ 根据题意=3·,‎ 解得θ0=或θ0=,‎ 直线l的极坐标方程θ=(ρ∈R)或θ=(ρ∈R).‎ ‎3.在极坐标系中,求曲线ρ=2cos θ关于直线θ=对称的曲线的极坐标方程.‎ 解 以极点为坐标原点,极轴为x轴建立直角坐标系,则曲线ρ=2cos θ的直角坐标方程 为(x-1)2+y2=1,且圆心为(1,0).直线θ=的直角坐标方程为y=x,因为圆心(1,0)关于y=x的对称点为(0,1),‎ 所以圆(x-1)2+y2=1关于y=x的对称曲线为x2+(y-1)2=1.‎ 所以曲线ρ=2cos θ关于直线θ=对称的曲线的极坐标方程为ρ=2sin θ.‎ ‎4.在极坐标系中,已知圆C的圆心C,半径r=3.‎ ‎(1)求圆C的极坐标方程;‎ ‎(2)若点Q在圆C上运动,点P在OQ的延长线上,且=2,求动点P的轨迹方程.‎ 解 (1)设M(ρ,θ)是圆C上任意一点.‎ 在△OCM中,∠COM=,由余弦定理得 ‎|CM|2=|OM|2+|OC|2-2|OM|·|OC|cos,‎ 化简得ρ=6cos.‎ ‎(2)设点Q(ρ1,θ1),P(ρ,θ),‎ 由=2,得=,‎ ‎∴ρ1=ρ,θ1=θ,‎ 代入圆C的方程,得 ρ=6cos,即ρ=9cos.‎ ‎5.已知曲线C1:x+y=和C2:(φ为参数).以原点O为极点,x轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.‎ ‎(1)把曲线C1和C2的方程化为极坐标方程;‎ ‎(2)设C1与x,y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1,C2交于P,Q两点,求P,Q两点间的距离.‎ ‎ ‎ ‎(2)∵M(,0),N(0,1),∴P,‎ ‎∴OP的极坐标方程为θ=,‎ 把θ=代入ρsin=,得ρ1=1,P.‎ 把θ=代入ρ2=,得ρ2=2,Q.‎ ‎∴|PQ|=|ρ2-ρ1|=1,即P,Q两点间的距离为1.‎

相关文档