- 179.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 圆的方程
最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
知 识 梳 理
1.圆的定义和圆的方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆
方
程
标准
(x-a)2+(y-b)2=r2(r>0)
圆心C(a,b)
半径为r
一般
x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
充要条件:D2+E2-4F>0
圆心坐标:
半径r=
2.点与圆的位置关系
平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:
(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;
(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;
(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( )
(2)方程x2+y2=a2表示半径为a的圆.( )
(3)方程x2+y2+4mx-2y+5m=0表示圆.( )
(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )
解析 (2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.
(3)当(4m)2+(-2)2-4×5m>0,即m<或m>1时才表示圆.
答案 (1)√ (2)× (3)× (4)√
2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是( )
A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2
解析 由题意得圆的半径为,故该圆的方程为(x-1)2+(y-1)2=2,故选D.
答案 D
3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是( )
A.(-1,1) B.(0,1)
C.(-∞,-1)∪(1,+∞) D.a=±1
解析 因为点(1,1)在圆的内部,
所以(1-a)2+(1+a)2<4,所以-10),
将P,Q两点的坐标分别代入得
又令y=0,得x2+Dx+F=0.③
设x1,x2是方程③的两根,
由|x1-x2|=6,得D2-4F=36,④
由①,②,④解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.
故所求圆的方程为
x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
答案 (1)(x-3)2+y2=2 (2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:
(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;
(2)代数法,即设出圆的方程,用待定系数法求解.
【训练1】 (1)(2016·天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.
(2)(2017·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.
解析 (1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d==,解得a=2,所以圆C的半径r=|CM|==3,所以圆C的方程为(x-2)2+y2=9.
(2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.
答案 (1)(x-2)2+y2=9 (2)(x-1)2+y2=4
考点二 与圆有关的最值问题
【例2】 已知实数x,y满足方程x2+y2-4x+1=0.
(1)求的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
解 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.
(1)的几何意义是圆上一点与原点连线的斜率,
所以设=k,即y=kx.
当直线y=kx与圆相切时,斜率k取最大值或最小值,此时=,解得k=±(如图1).
所以的最大值为,最小值为-.
(2)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±(如图2).
所以y-x的最大值为-2+,最小值为-2-.
(3)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).
又圆心到原点的距离为=2,
所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.
规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:
(1)形如m=的最值问题,可转化为动直线斜率的最值问题;
(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;
(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.
【训练2】 (1)(2017·义乌市诊断)圆心在曲线y=(x>0)上,与直线2x+y+1=0相切,且面积最小的圆的方程为( )
A.(x-2)2+(y-1)2=25 B.(x-2)2+(y-1)2=5
C.(x-1)2+(y-2)2=25 D.(x-1)2+(y-2)2=5
(2)(2014·全国Ⅱ卷)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.
解析 (1)设圆心坐标为C(a>0),则半径r=≥=,当且仅当2a=,即a=1时取等号.
所以当a=1时圆的半径最小,此时r=,C(1,2),所以面积最小的圆的方程为(x-1)2+(y-2)2=5.
(2)如图所示,过点O作OP⊥MN交MN于点P.
在Rt△OMP中,|OP|=|OM|·sin 45°,
又|OP|≤1,得|OM|≤=.
∴|OM|=≤,∴x≤1.
因此-1≤x0≤1.
答案 (1)D (2)[-1,1]
考点三 与圆有关的轨迹问题
【例3】 设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹.
解 如图所示,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.由于平行四边形的对角线互相平分,
故=,=.从而
又N(x+3,y-4)在圆上,
故(x+3)2+(y-4)2=4.
因此所求轨迹为圆:(x+3)2+(y-4)2=4,但应除去两点和(点P在直线OM上时的情况).
规律方法 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:
(1)直接法,直接根据题目提供的条件列出方程;
(2)定义法,根据圆、直线等定义列方程;
(3)几何法,利用圆的几何性质列方程;
(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.
【训练3】 (2014·全国Ⅰ卷)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
解 (1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.
设M(x,y),则=(x,y-4),=(2-x,2-y).
由题设知·=0,故x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.
(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.
因为ON的斜率为3,所以l的斜率为-,
故l的方程为x+3y-8=0.
又|OM|=|OP|=2,O到l的距离为,
所以|PM|=,S△POM=××=,
故△POM的面积为.
[思想方法]
1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.
2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.
[易错防范]
1.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.
2.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.