• 915.00 KB
  • 2021-06-16 发布

【数学】陕西省西安中学2019-2020学年高二下学期期末考试(理)

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
陕西省西安中学2019-2020学年高二下学期期末考试(理)‎ 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.设集合,,则(  )‎ A. B. C. D.‎ ‎2.已知a为实数,若复数为纯虚数,则=(  )‎ A. B. C. D.‎ ‎3.已知,,,则、、的大小关系为(  )‎ A. B. ‎ C. D. ‎ ‎4.如图,是可导函数,直线是曲线在处的切线,令,是的导函数,则等于(  )‎ A. B. 0 C. 2 D. 4‎ ‎5.天干地支纪年法源于中国,包含十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”……依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,……依此类推。已知一个“甲子”为60年,即天干地支纪年法的一个周期,1949年为“己丑”年,那么到新中国成立80周年时,即2029年为(  )‎ A. 己申年 B. 己酉年 C. 庚酉年 D. 庚申年 ‎6.若函数在区间为增函数,则实数k的取值范围是( )‎ A. B. C. D. ‎ ‎7.若,,则(  )‎ A. B. C. D. ‎ ‎8.已知函数,则的图象大致为(  )‎ A. B. C. D. ‎ ‎9.若实数x,y满足,则的最小值(  )‎ A. 1 B. 3 C. 4 D. 9‎ ‎10.已知且则的最小值为(  )‎ A. 3 B.5 C. 7 D. 9‎ ‎11.已知函数,则不等式的解集为( )‎ A. B. C. D. ‎ ‎12.已知函数与的图像上存关于x轴对称的点,则实数的取值范围为(  )‎ A. B. C. D. ‎ 第Ⅱ卷(非选择题 共90分)‎ 二、填空题:本大题共4小题,每小题5分.‎ ‎13.欧拉公式把自然对数的底数e,虚数单位i,三角函数和联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”若复数满足,则= .‎ ‎14.设,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a= .‎ ‎15.直线与曲线相切,则的值为 .‎ ‎16.已知函数在上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为,当时,有不等式成立,若对,不等式恒成立,则正整数的最大值为_______.‎ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.‎ ‎17.(本小题满分10分)‎ ‎(Ⅰ)已知不等式的解集为,求的最小值.‎ ‎(Ⅱ)若正数满足,求证:.‎ ‎18.(本小题满分12分)‎ 已知椭圆C:,直线l: (t为参数).‎ ‎(Ⅰ)写出椭圆C的参数方程及直线l的普通方程;‎ ‎(Ⅱ)设A(1,0),若椭圆C上的点P满足到点A的距离与到直线l的距离相等,求点P的坐标.‎ ‎19.(本小题满分12分)‎ 已知函数.‎ ‎(Ⅰ)求曲线在点处的切线方程;‎ ‎(Ⅱ)求函数在区间上的最大值和最小值.‎ 20. ‎(本小题满分12分)‎ 设函数,.‎ ‎ (Ⅰ)当时,求不等式的解集;‎ ‎(Ⅱ)若不等式在上恒成立,求实数的取值范围.‎ 21. ‎(本小题满分12分)‎ 有一种赛车跑道类似“梨形”曲线,由圆弧,和线段,四部分组成,在极坐标系中,,,,,弧,所在圆的圆心分别是,,曲线是弧,曲线是弧.‎ ‎(Ⅰ)分别写出,的极坐标方程;‎ ‎(Ⅱ)点,位于曲线上,且,‎ 求△面积的取值范围.‎ 22. ‎(本小题满分12分)‎ 已知函数.‎ ‎(Ⅰ)若函数在上恰有两个零点,求实数的取值范围.‎ ‎(Ⅱ)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.‎ 参考答案 一、选择题:‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答案 C A D B B C D A B C C B 二、填空题:‎ ‎13. 14. 15. 16.‎ 三、解答题:‎ ‎17.解:(Ⅰ)时,, 因为不等式的解集为, 所以方程的两根为, 由韦达定理可得,, ………………2分 因为,所以, 则,‎ 当且仅当时取等号. ………………5分 ‎(Ⅱ)解法一:基本不等式,由为正数且 ‎ 由基本不等式,有 ………………3分 三式相加可得:‎ ‎,‎ 即(当且仅当时等号成立) ………5分 解法二:柯西不等式,由为正数且 ‎ 由柯西不等式,‎ ‎………3分 所以,即(当且仅当时等号成立) ………5分 ‎18.(Ⅰ)椭圆C的参数方程为 (θ为参数),‎ 直线l的普通方程为x-y+9=0. ………………5分 ‎(Ⅱ)设P(2cos θ,sin θ),‎ 则|AP|==2-cos θ, ………………7分 P到直线l的距离 d==. ………………9分 由|AP|=d,得3sin θ-4cos θ=5,‎ 又sin2θ+cos2θ=1,得sin θ=,cos θ=-.‎ 故. ………………12分 19. 解:(Ⅰ)因为,‎ 所以.又因为,‎ 所以曲线在点处的切线方程为. ………………5分 ‎(Ⅱ)设,则.‎ 当时,,所以在区间上单调递减.………………8分 所以对任意有,即. ‎ 所以函数在区间上单调递减.‎ 因此在区间上的最大值为,最小值为.………12分 19. ‎(Ⅰ), ……………2分 当时,,‎ ‎①当时,原不等式等价于,解得; ‎ ‎ ……………………3分 ‎②当时,原不等式等价于,‎ 解之,得,; ………………4分 ‎③当时,,而,‎ ‎ 不等式解集为空集. ……………………………5分 综上所述,不等式的解集为.……………………6分 ‎(Ⅱ)①当时,恒成立等价于,又,‎ ‎ ,故; ……………………………………8分 ‎②当时,恒成立等价于恒成立,即,‎ 只需即可,即 , …………………………11分 综上,. ………………………………………………12分 21. 解:(Ⅰ)由题意,的极坐标方程是, ………………2分 记圆弧所在圆的圆心为,易得极点在圆弧所在圆上,‎ 设为上任意一点,则在△中,‎ 可得, ……………………………………………5分 ‎,的极坐标方程分别为,;‎ ‎…………………………………………6分 ‎(Ⅱ)不妨设,,其中, ‎ 则,, ……………………………………8分 ‎,‎ ‎, ……………………10分 又,, ‎ ‎ △的面积的取值范围是. ………………………………12分 21. 解:(Ⅰ)因为,‎ ‎∴函数,‎ 令,则, ……2分 令得,,列表得:‎ ‎1‎ ‎2‎ ‎0‎ ‎0‎ 单调递减 极小值 单调递增 ‎∴当时,的极小值为,又,. ………………………………4分 ‎∵函数在上恰有两个零点,‎ ‎∴即,解得. …………………………6分 ‎(Ⅱ),∴,‎ 令得,‎ ‎∵,是的极值点,∴,,∴,‎ ‎∵,∴解得:, …………………………8分 ‎∴,‎ ‎.‎ 令,‎ 则,∴上单调递减;‎ ‎∴当时,, …………………………11分 根据恒成立,可得,‎ ‎∴的最大值为. …………………………12分