- 228.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第6讲 对数与对数函数
最新考纲 1.理解对数的概念,掌握对数的运算,会用换底公式;2.理解对数函数的概念,掌握对数函数的图象、性质及应用.
知 识 梳 理
1.对数的概念
如果ax=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.
2.对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且a≠1).
(2)对数的运算法则
如果a>0且a≠1,M>0,N>0,那么
①loga(MN)=logaM+logaN;
②loga=logaM-logaN;
③logaMn=nlogaM(n∈R);
④logamMn=logaM(m,n∈R,且m≠0).
(3)对数的重要公式
①换底公式:logbN=(a,b均大于零且不等于1);
②logab=,推广logab·logbc·logcd=logad.
3.对数函数及其性质
(1)概念:函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
(2)对数函数的图象与性质
a>1
01时,y>0;
当x>1时,y<0;
当00
在(0,+∞)上是增函数
在(0,+∞)上是减函数
4.反函数
指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)log2x2=2log2x.( )
(2)函数y=log2(x+1)是对数函数( )
(3)函数y=ln与y=ln(1+x)-ln(1-x)的定义域相同.( )
(4)当x>1时,若logax>logbx,则a0,且a≠1)的图象如图,则下列结论成立的是( )
A.a>1,c>1
B.a>1,01
D.00,即logac>0,所以0b>c B.a>c>b C.c>b>a D.c>a>b
解析 ∵01.
∴c>a>b.
答案 D
4.(2017·湖州调研)已知a>0且a≠1,若a=,则a=________;loga=________.
解析 ∵a>0且a≠1,∴由a=得a===;loga=log=2.
答案 2
5.(2015·浙江卷)计算:log2=________;2log23+log43=________.
解析 log2=log2-log22=-1=-;
2log23+log43=2log23·2log43=3×2log43=3×2log2=3.
答案 - 3
6.若loga<1(a>0,且a≠1),则实数a的取值范围是________.
解析 当01时,loga1.
答案 ∪(1,+∞)
考点一 对数的运算
【例1】 (1)设2a=5b=m,且+=2,则m等于( )
A. B.10 C.20 D.100
(2)计算:÷100-=________.
解析 (1)由已知,得a=log2m,b=log5m,
则+=+=logm2+logm5=logm10=2.
解得m=.
(2)原式=(lg 2-2-lg 52)×100=lg×10=lg 10-2×10=-2×10=-20.
答案 (1)A (2)-20
规律方法 (1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.
(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.
(3)ab=N⇔b=logaN(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.
【训练1】 (1)(2017·北京东城区综合练习)已知函数f(x)=则f(2+log23)的值为( )
A.24 B.16 C.12 D.8
(2)(2015·安徽卷)lg+2lg 2-=________.
解析 (1)因为3<2+log23<4,所以f(2+log23)=f(3+log23)=23+log23=8×2log23=24.
(2)lg+2lg 2-=lg 5-lg 2+2lg 2-2=lg 5+lg 2-2=lg 10-2=-1.
答案 (1)A (2)-1
考点二 对数函数的图象及应用
【例2】 (1)(2017·郑州一模)若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|的图象大致是( )
(2)(2017·金华调研)已知函数f(x)=且关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是________.
解析 (1)由于y=a|x|的值域为{y|y≥1},
∴a>1,则y=logax在(0,+∞)上是增函数,
又函数y=loga|x|的图象关于y轴对称.
因此y=loga|x|的图象应大致为选项B.
(2)如图,在同一坐标系中分别作出y=f(x)与y=-x+a的图象,其中a表示直线在y轴上截距.
由图可知,当a>1时,直线y=-x+a与y=log2x只有一个交点.
答案 (1)B (2)a>1
规律方法 (1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.
(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.
【训练2】 (1)函数y=2log4(1-x)的图象大致是( )
(2)当01时,不符合题意,舍去.
所以实数a的取值范围是.
答案 (1)C (2)B
考点三 对数函数的性质及应用(多维探究)
命题角度一 比较对数值的大小
【例3-1】 (2016·全国Ⅰ卷)若a>b>0,0cb
解析 由y=xc与y=cx的单调性知,C、D不正确.
∵y=logcx是减函数,得logca0且a≠1,故必有a2+1>2a,
又loga(a2+1)1,∴a>.综上,a∈.
答案 C
命题角度三 对数型函数的性质
【例3-3】 已知函数f(x)=loga(3-ax).
(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;
(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.
解 (1)∵a>0且a≠1,设t(x)=3-ax,
则t(x)=3-ax为减函数,
x∈[0,2]时,t(x)的最小值为3-2a,
当x∈[0,2]时,f(x)恒有意义,
即x∈[0,2]时,3-ax>0恒成立.
∴3-2a>0.∴a<.
又a>0且a≠1,∴a∈(0,1)∪.
(2)t(x)=3-ax,∵a>0,
∴函数t(x)为减函数.
∵f(x)在区间[1,2]上为减函数,∴y=logat为增函数,
∴a>1,x∈[1,2]时,t(x)最小值为3-2a,f(x)最大值为f(1)=loga(3-a),
∴即
故不存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1.
规律方法 (1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.
(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.
(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件.
【训练3】 (1)设a=log32,b=log52,c=log23,则( )
A.a>c>b B.b>c>a
C.c>b>a D.c>a>b
(2)已知函数f(x)=loga(8-ax)(a>0,且a≠1),若f(x)>1在区间[1,2]上恒成立,则实数a的取值范围是________.
解析 (1)a=log32log22=1,
所以,c最大.
由1,即a>b,
所以c>a>b.
(2)当a>1时,f(x)=loga(8-ax)在[1,2]上是减函数,由f(x)>1在区间[1,2]上恒成立,
则f(x)min=loga(8-2a)>1,
解之得11在区间[1,2]上恒成立,
则f(x)min=loga(8-a)>1,且8-2a>0.
∴a>4,且a<4,故不存在.
综上可知,实数a的取值范围是.
答案 (1)D (2)
[思想方法]
1.对数值取正、负值的规律
当a>1且b>1或00;
当a>1且01时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.
3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.
4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y=1交点的横坐标进行判定.
[易错防范]
1.在对数式中,真数必须是大于0的,所以对数函数y=logax的定义域应为(0,+∞).对数函数的单调性取决于底数a与1的大小关系,当底数a与1的大小关系不确定时,要分01两种情况讨论.
2.在运算性质logaMα=αlogaM中,要特别注意条件,在无M>0的条件下应为logaMα=αloga|M|(α∈N*,且α为偶数).
3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.