- 502.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【知识要点】
求几何体外接球的半径一般有两种方法:模型法和解三角形法.
模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径就是几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.
解三角形法就是找到球心和截面圆的圆心,找到、球的半径、截面圆的半径确定的,再解求出球的半径.学 .
【方法讲评】
方法一
模型法
解题情景
已知中有多个垂直关系,可以考虑用此种方法.
解题步骤
把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径就是几何体的外接球半径.
【例1】已知四面体中,,,,平面,则四面体外接球的表面积为__.
【点评】(1)本题看起 没有三条直线相交于一点且两两垂直的模型,但是通过推理分析得到了两两垂直,所以可以采用模型法 求几何体外接球的半径. (2)利用模型法解答时,一定
要保证几何体的所有顶点都和长方体的顶点重合,这才能保证几何体的外接球和长方体的外接球是同一个外接球,才能用长方体的外接球半径公式
,有一个点不是长方体的顶点都不行.
【反馈检测1】已知棱长为的正四面体(四个面都是正三角形的三棱锥)的四个顶点都在同一球面上,则球的体积为___________.
方法二
解三角形法
解题情景
几何体不能放到长方体模型中.
解题步骤
找到球心和截面圆的圆心,找到、球的半径、截面圆的半径确定的,再解求出球的半径.
【例2】在直三棱柱中,,,,,则直三棱柱的外接球的表面积 .
【点评】(1)由于本题的几何体不宜放在长方体模型中,所以用解三角形法解答. (2)利用解三角形法求几何体外接球的半径,先要找到球心的位置,要找球心的位置,没有固定的规律,要结合几何体的特征,发挥自己的空间想象力分析,本题由于是直三棱柱,所以球心在上下底面外接圆圆心连线的中点,如果是其它的几何体就不是这个位置了.
找到球心的位置后,再确定截面圆的圆心位置,再表示出球心到截面圆圆心的距离,这个是难点,要结合几何图形分析.最后是解,求出球的半径. (2)如果几何体底面是三角形,求截面圆的半径,一般利用正弦定理求截面圆的半径.
【反馈检测2】已知三棱锥的四个顶点都在同一个球面上,底面满足,若该三棱锥体积最大值为3,则其外接球的表面积为( )
A. B. C. D.
【反馈检测3】已知三棱锥的所有顶点都在球的球面上,,,,,,,则球的表面积为( )
A. B. C. D.
高中数学常见题型解法归纳及反馈检测第62讲:
几何体外接球的半径的求法参考答案
【反馈检测1答案】
【反馈检测1详细解析】
【反馈检测2答案】D
【反馈检测2详细解析】因为为等腰直角三角形,所以AC为截面圆的直径,故该三棱锥的外接球的球心O在截面ABC中的射影为AC的中点D,当P,O,D三点共线且P,O位于截面同一侧的棱锥的体积最大,棱锥的最大高度为,所以,求出,设外接球的半径为则
,在中,,由勾股定理得,解得,所以外接球的表面积为,选D.
【反馈检测3答案】A