- 37.78 KB
- 2021-06-17 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时分层训练(十四) 导数与函数的单调性
(对应学生用书第192页)
A组 基础达标
(建议用时:30分钟)
一、选择题
1.函数y=x2-ln x的单调递减区间为( )
A.(-1,1) B.(0,1)
C.(1,+∞) D.(0,+∞)
B [y=x2-ln x,y′=x-=
=(x>0).
令y′<0,得0<x<1,∴单调递减区间为(0,1).]
2.已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图2113所示,则下列叙述正确的是( )
图2113
A.f(b)>f(c)>f(d)
B.f(b)>f(a)>f(e)
C.f(c)>f(b)>f(a)
D.f(c)>f(e)>f(d)
C [依题意得,当x∈(-∞,c)时,f′(x)>0,因此,函数f(x)在(-∞,c)上是增加的,由a<b<c,所以f(c)>f(b)>f(a).因此C正确.]
3.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围为( )
A.(-∞,2) B.(-∞,2]
C. D.
D [∵f′(x)=6x2-6mx+6,
当x∈(2,+∞)时,f′(x)≥0恒成立,
即x2-mx+1≥0恒成立,∴m≤x+恒成立.
令g(x)=x+,g′(x)=1-,
∴当x>2时,g′(x)>0,即g(x)在(2,+∞)上单调递增,
∴m≤2+=,故选D.]
4.(2017·山东高考)若函数exf(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是( )
A.f(x)=2-x B.f(x)=x2
C.f(x)=3-x D.f(x)=cos x
A [若f(x)具有性质M,则[exf(x)]′=ex[f(x)+f′(x)]>0在f(x)的定义域上恒成立,即f(x)+f′(x)>0在f(x)的定义域上恒成立.
对于选项A,f(x)+f′(x)=2-x-2-xln 2=2-x(1-ln 2)>0,符合题意.
经验证,选项B,C,D均不符合题意.
故选A.]
5.(2016·湖北枣阳第一中学3月模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ) 【导学号:00090066】
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
B [由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上是增加的,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.]
二、填空题
6.函数f(x)=的单调递增区间是________.
(0,e) [由f′(x)=′=>0(x>0),
可得解得x∈(0,e).]
7.若函数y=ax+sin x在R上是增加的,则a的最小值为________.
1 [函数y=ax+sin x在R上单调递增等价于y′=a+cos x≥0在R上恒成立,即a≥-cos x在R上恒成立,因为-1≤-cos x≤1,所以a≥1,即a的最小值为1.]
8.(2017·江苏高考)已知函数f(x)=x3-2x+ex-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是________.
[因为f(-x)=(-x)3-2(-x)+e-x-
=-x3+2x-ex+=-f(x),
所以f(x)=x3-2x+ex-是奇函数.
因为f(a-1)+f(2a2)≤0,
所以f(2a2)≤-f(a-1),即f(2a2)≤f(1-a).
因为f′(x)=3x2-2+ex+e-x≥3x2-2+2=3x2≥0,
所以f(x)在R上是增加的,
所以2a2≤1-a,即2a2+a-1≤0,
所以-1≤a≤.]
三、解答题
9.已知函数f(x)=(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间. 【导学号:00090067】
[解] (1)由题意得f′(x)=,
又f′(1)==0,故k=1. 5分
(2)由(1)知,f′(x)=.
设h(x)=-ln x-1(x>0),
则h′(x)=--<0,
即h(x)在(0,+∞)上是减少的. 8分
由h(1)=0知,当0<x<1时,h(x)>0,从而f′(x)>0;
当x>1时,h(x)<0,从而f′(x)<0.
综上可知,f(x)的单调递增区间是(0,1),
单调递减区间是(1,+∞). 12分
10.(2015·重庆高考)已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.
(1)确定a的值;
(2)若g(x)=f(x)ex,讨论g(x)的单调性.
[解] (1)对f(x)求导得f′(x)=3ax2+2x, 2分
因为f(x)在x=-处取得极值,
所以f′=0,
即3a·+2·=-=0,
解得a=. 5分
(2)由(1)得g(x)=ex,
故g′(x)=ex+ex
=ex
=x(x+1)(x+4)ex. 8分
令g′(x)=0,解得x=0或x=-1或x=-4.
当x<-4时,g′(x)<0,故g(x)为减函数;
当-40,故g(x)为增函数;
当-10时,g′(x)>0,故g(x)为增函数.
综上知,g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 12分
B组 能力提升
(建议用时:15分钟)
1.(2018·江淮十校联考)设函数f(x)=x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值范围是( )
A.1<a≤2 B.a≥4
C.a≤2 D.0<a≤3
A [易知函数f(x)的定义域为(0,+∞),f′(x)=x-,由f′(x)=x-<0,解得0<x<3.因为函数f(x)=x2-9ln x在区间[a-1,a+1]上是减少的,所以解得1<a≤2,选A]
2.(2017·石家庄质检(二))设f′(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf′(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是________.
【导学号:00090068】
(-2,0)∪(2,+∞) [令g(x)=,则g′(x)=>0,x∈(0,+∞),所以函数g(x)在(0,+∞)上单调递增.又g(-x)====g(x),则g(x)是偶函数,g(-2)=0=g(2),则f(x)=xg(x)>0⇔或解得x>2或-2<x<0,故不等式f(x)>0的解集为(-2,0)∪(2,+∞).]
3.已知函数f(x)=ln x,g(x)=ax+b.
(1)若f(x)与g(x)在x=1处相切,求g(x)的表达式;
(2)若φ(x)=-f(x)在[1,+∞)上是减少的,求实数m的取值范围.
[解] (1)由已知得f′(x)=,∴f′(1)=1=a,a=2.
又∵g(1)=0=a+b,∴b=-1,∴g(x)=x-1. 5分
(2)∵φ(x)=-f(x)=-ln x在[1,+∞)上是减少的,
∴φ′(x)=≤0在[1,+∞)上恒成立,
即x2-(2m-2)x+1≥0在[1,+∞)上恒成立,
则2m-2≤x+,x∈[1,+∞). 9分
∵x+∈[2,+∞),∴2m-2≤2,m≤2.
故实数m的取值范围是(-∞,2]. 12分