- 15.17 KB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第32练 高考大题突破练—三角函数与解三角形
[基础保分练]
1.(2018·安徽省皖中名校联考)在△ABC中,a,b,c分别是内角A,B,C所对的边,且满足+=0.
(1)求角C的值;
(2)若b=2,AB边上的中线CD=,求△ABC的面积.
2.(2019·河北衡水中学调研)已知函数f(x)=sincos-sin2.
(1)求f(x)的单调递增区间;
(2)求f(x)在区间[-π,0]上的最小值.
3.已知函数f(x)=cos2x-sin2x+,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.
[能力提升练]
4.函数f(x)=cos(πx+φ)的部分图象如图所示.
(1)求φ及图中x0的值;
(2)设g(x)=f(x)+f,求函数g(x)在区间上的最大值和最小值.
答案精析
基础保分练
1.解 (1)∵+=0,
由正弦定理得,+=0,
即cosB·sinC+cosC·(-2sinA+sinB)=0,
从而sin(B+C)-2sinA·cosC=0,
即sinA-2sinA·cosC=0,
又在△ABC中,sinA>0,0°