• 265.77 KB
  • 2021-06-19 发布

宁夏银川市第一中学2020届高三上学期第二次月考 数学(文)

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
银川一中2020届高三年级第二次月考 文 科 数 学 注意事项:‎ ‎1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。‎ ‎2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。‎ ‎3.考试结束后,将本试卷和答题卡一并交回。‎ 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.已知,,则 A.(-1,0) B.(0,2) C.(-2,0) D.(-2,2)‎ ‎2.在复平面内,复数所对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎3.设函数,则 ‎ A.2 B.3 C.4 D.5‎ ‎4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第三天走了 A.192里 B.96里 C.48里 D.24里 ‎5.已知向量=(1,2),=(2,-2),=(m,1).若∥(2+),则m=‎ A.0 B.1 C.2 D.3‎ ‎6.设,,,则 ‎ A. B. C. D. ‎ ‎7.曲线在处的切线的倾斜角为,则的值为 A. B. C. D.‎ ‎·8·‎ ‎8.等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}的前8项和为 A.-48 B.-96 C.36 D.72‎ ‎9.记不超过实数x的最大整数为,则函数称作 取整函数,取整函数在科学和工程上有广泛应用.下面 的程序框图是与取整函数有关的求和问题,若输出的S 的值为5,则判断框内填入的条件可以是 A. ‎ B. ‎ C. D.‎ ‎10.已知数列满足,,则 ‎ A. B. ‎ C. D.‎ ‎11.已知正方形ABCD的边长为2,M为平面ABCD内一点(包含边界),则 的最小值为 A. B. C. D.‎ ‎12.已知,都是定义在上的函数,,,且,,若数列的前项和大于,则的最小值为 A.8 B.9 C.10 D.11‎ 二、填空题:本题共4小题,每小题5分,共20分.‎ ‎13.设函数.若为奇函数,则函数的单调递减区间 为____________.‎ ‎14.已知向量与的夹角为120°,,,则________.‎ ‎15.函数 的最大值是 . ‎ ‎16.已知数列满足,(),数列是单调递增数列,‎ 且,(),则实数的取值范围为____________.‎ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.‎ ‎·8·‎ ‎(一)必考题:共60分.‎ ‎17.(12分)‎ 已知等差数列的前n项和为,,.‎ ‎ (1)求的通项公式;‎ ‎(2)求,并求当取何值时有最小值.‎ ‎18.(12分)‎ 已知,,函数,‎ ‎(1)求函数y=f(x)的单调增区间和对称轴方程;‎ ‎(2)若,求的取值范围.‎ ‎19.(12分)‎ 已知等比数列{an}的前n项和为Sn,且满足 (k∈R).‎ ‎(1)求k和数列{an}的通项公式;‎ ‎(2)若数列{bn}满足bn=,求数列{bn}的前n项和Tn.‎ ‎20.(12分)‎ 在平面四边形中,,,,.‎ ‎(1)求和四边形的面积;‎ ‎(2)若E是BD的中点,求CE.‎ ‎21.(12分)‎ 已知.‎ ‎(1)若,求在上的最小值;‎ ‎(2)求的极值点;‎ ‎(3)若在内有两个零点,求的取值范围.‎ ‎·8·‎ ‎(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做.则按所做的第一题记分.‎ ‎22.[选修4-4:坐标系与参数方程]‎ 已知圆(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,点的极坐标分别为.‎ ‎(1)求圆的极坐标方程; ‎ ‎(2)若为圆上的一动点,求的取值范围.‎ ‎23.[选修4-5:不等式选讲]‎ 已知为正数,且满足,证明:‎ ‎(1);‎ ‎(2).‎ ‎·8·‎ 银川一中2020届高三年级第二次月考(文科)参考答案 一. 选择题 B AACC DDACB BD 二. 填空题 13. 14. 15. 16.‎ 三. 解答题 ‎17.解析:(1)设{an}的公差为d,由题意得...............2分 得a1=–7,d=2............................................................................4分 所以{an}的通项公式为an=2n–9...................................................6分 ‎(2)由(1)得Sn=n2–8n=(n–4)2–16...........................................10分 所以当n=4时,Sn取得最小值,最小值为–16...............................12分 18. 解析:(1)‎ ‎=.............................................2分 单调增区间为.........................................4分 对称轴方程为.................................................6分 (2) 由得 ‎ 得........10分 所以x的取值范围为...............................12分 ‎ 19解析:(1)当n≥2时,由2Sn=2n+1+k (k∈R)得2Sn-1=2n+k(k∈R),......2分 所以2an=2Sn-2Sn-1=2n,即an=2n-1(n≥2),........................4分 又a1=S1=2+,当k=-2时,a1=1符合数列{an}为等比数列,‎ 所以{an}的通项公式为an=2n-1................................................6分 ‎(2)由(1)可得log2(an·an+1)=log2(2n-1·2n)=2n-1,.........................8分 ‎·8·‎ 所以bn==,.........................10分 所以Tn=b1+b2+…+bn=(1-+-+…+-)=...........12分 ‎20. 解析(1)由题设及余弦定理得 BD2=BC2+CD2-2BC·CDcos C ‎=13-12cos C,①‎ BD2=AB2+DA2-2AB·DAcos A ‎=5+4cos C.②.......................................2分 由①②得cos C=,故C=60°,BD=..........................................4分 四边形ABCD的面积S=AB·DAsin A+BC·CDsin C ‎=×1×2+×3×2sin 60°‎ ‎=2. .........................................................6分....‎ (2) 由得 .......................8分 ‎...............10分 ‎ =‎ ‎ =‎ 所以.....................................................12分 ‎21. 解析:(1),................................2分 因为,所以 所以在上是减函数,‎ 所以最小值为.........................................4分 ‎·8·‎ (2) 定义域为,‎ 令得................................6分 因为,所以当时,,当时 所以在单调递增,在单调递减,‎ 所以为极大值点,无极小值点................................................8分 ‎(3).由,得,‎ 令 当时,,当时 所以g(x)在上是减函数,在上是增函数,...............................10分 所以得.............................................12分 ‎22.解:解析:(1)把圆的参数方程化为普通方程为,即,..................2分 由,‎ 得圆的极坐标方程为.................5分 ‎(2)设的直角坐标分别为,.....7分 则 ‎·8·‎ ‎ 所以的取值范围为.....10分 ‎23.解析:(1),.‎ 由基本不等式可得,.........2分 于是得到.........5分 ‎(2)由基本不等式得到,‎ ‎,....7分 于是得到 ‎....10分 ‎·8·‎