• 713.00 KB
  • 2021-06-19 发布

【数学】2020届一轮复习人教A版二元一次不等式(组)学案

  • 18页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第2节 二元一次不等式(组) ‎ 考试要求 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.‎ 知 识 梳 理 ‎1.二元一次不等式(组)表示的平面区域 ‎(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax+By+C≥0所表示的平面区域(半平面)包括边界直线.‎ ‎(2)对于直线Ax+By+C=0同一侧的所有点(x,y),使得Ax+By+C的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax+By+C>0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax+By+C<0.‎ ‎(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.‎ ‎2.线性规划的有关概念 名称 意义 线性约束条件 由x,y的一次不等式(或方程)组成的不等式组,是对x,y的约束条件 目标函数 关于x,y的解析式 线性目标函数 关于x,y的一次解析式 可行解 满足线性约束条件的解(x,y)‎ 可行域 所有可行解组成的集合 最优解 使目标函数达到最大值或最小值的可行解 线性规划问题 求线性目标函数在线性约束条件下的最大值或最小值的问题 ‎[常用结论与易错提醒]‎ ‎1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.‎ ‎2.在通过求直线的截距的最值间接求出z的最值时,要注意:当b>0时,截距取最大值时,z也取最大值;截距取最小值时,z也取最小值;当b<0时,截距取最大值时,z取最小值;截距 取最小值时,z取最大值.‎ 基 础 自 测 ‎1.思考辨析(在括号内打“√”或“×”)‎ ‎(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.(  )‎ ‎(2)线性目标函数的最优解可能是不唯一的.(  )‎ ‎(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.(  )‎ ‎(4)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.(  )‎ ‎(5)不等式x2-y2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y轴的两块区域.(  )‎ 解析 (1)不等式x-y+1>0表示的平面区域在直线x-y+1=0的下方.‎ ‎(4)直线ax+by-z=0在y轴上的截距是.‎ 答案 (1)× (2)√ (3)√ (4)× (5)√‎ ‎2.下列各点中,不在x+y-1≤0表示的平面区域内的是(  )‎ A.(0,0) B.(-1,1)‎ C.(-1,3) D.(2,-3)‎ 解析 把各点的坐标代入可得(-1,3)不适合,故选C.‎ 答案 C ‎3.(必修5P86T3改编)不等式组表示的平面区域是(  )‎ 解析 x-3y+6≥0表示直线x-3y+6=0及其右下方部分,x-y+2<0表示直线x-y+2=0左上方部分,故不等式表示的平面区域为选项B.‎ 答案 B ‎4.(2018·浙江卷)若x,y满足约束条件则z=x+3y的最小值是________,最大值是________.‎ 解析 由题可得,该约束条件表示的平面区域是以(2,2),(1,1),(4,-2)为顶点的三角形及其内部区域(图略).由线性规划的知识可知,目标函数z=x+3y在点(2,2)处取得最大值,在点(4,-2)处取得最小值,则最小值zmin=4-6=-2,最大值zmax=2+6=8.‎ 答案 -2 8‎ ‎5.(2019·嘉兴检测)实数x,y满足若z=3x+y的最小值为1,则正实数k=________.‎ 解析 因为k>0,则题中的不等式组表示的平面区域为以(1,0),,为顶点的三角形区域(包含边界),易得当目标函数z=3x+y经过平面区域内点 时,z=3x+y取得最小值zmin=+=1,解得k=.‎ 答案  ‎6.(2018·丽水月考)已知整数x,y满足不等式 则2x+y的最大值是________;x2+y2的最小值是________.‎ 解析 满足不等式组 的可行域如图所示,由z=2x+y,得y=-2x+z,由图可知,当直线y=-2x+z过A时,直线在y轴上的截距最大,由可得即A点坐标为(8,8),z最大值等于2×8+8=24.x2+y2的最小值是可行域的B到原点距离的平方,由可得B(2,2),可得22+22=8.‎ 答案 24 8‎ 考点一 二元一次不等式(组)表示的平面区域 ‎【例1】 (1)(2019·杭州质检)设不等式组所表示的区域面积为S(m∈R).若S≤1,则(  )‎ A.m≤-2 B.-2≤m≤0‎ C.00)的最大值为1,则m的值是(  )‎ A.- B.1 ‎ C.2 D.5‎ 解析 作出可行域,如图所示的阴影部分.‎ 化目标函数z=y-mx(m>0)为y=mx+z,由图可知,当直线y=mx+z过A点时,直线在y轴的截距最大,由解得即A(1,2),∴2-m=1,解得m=1.故选B.‎ 答案 B ‎8.若函数y=2x图象上存在点(x,y)满足约束条件则实数m的最大值为(  )‎ A. B.1 ‎ C. D.2‎ 解析 在同一直角坐标系中作出函数y=2x的图象及所表示的平面区域,如图阴影部分所示.‎ 由图可知,当m≤1时,‎ 函数y=2x的图象上存在点(x,y)满足约束条件,‎ 故m的最大值为1.‎ 答案 B 二、填空题 ‎9.(2018·北京卷)若x,y满足x+1≤y≤2x,则2y-x的最小值是________.‎ 解析 法一 x+1≤y≤2x表示的平面区域如图中阴影部分所示,令z=2y-x,易知z=2y-x在点A(1,2)处取得最小值,最小值为3.‎ 法二 由题意知则2y-x=-3(x-y)+(2x-y)≥3,所以2y-x的最小值为3.‎ 答案 3‎ ‎10.已知O是坐标原点,点M的坐标为(2,1),若点N(x,y)为平面区域上的一个动点,则·的最大值是________.‎ 解析 依题意,得不等式组对应的平面区域如图中阴影部分所示,‎ 其中A,B,C(1,1).‎ 设z=·=2x+y,当目标函数z=2x+y过点C(1,1)时,z=2x+y取得最大值3.‎ 答案 3‎ ‎11.已知实数x,y满足不等式组则|x-y|的最大值为________.‎ 解析 在平面直角坐标系内画出题中的不等式组表示的平面区域为以(4,0),(8,8),(0,2)为顶点的三角形区域(包含边界),设z=x-y,则由图易得当z=x-y经过平面区域内的点(4,0)时,z=x-y取得最大值zmax=4-0=4,当z=x-y经过平面区域内的点(0,2)时,z=x-y取得最小值zmin=0-2=-2,所以|x-y|的取值范围为[0,4],最大值为4.‎ 答案 4‎ ‎12.已知实数x,y满足设b=x-2y,若b的最小值为-2,则b的最大值为________.‎ 解析 作出不等式组满足的可行域如图阴影部分所示.‎ 作出直线l0:x-2y=0,‎ ‎∵y=-,‎ ‎∴当l0平移至A点处时b有最小值,bmin=-a,又bmin=-2,‎ ‎∴a=2,当l0平移至B(a,-2a)时,b有最大值bmax=a-2×(-2a)=5a=10.‎ 答案 10‎ ‎13.(2019·金丽衢十二校联考)设x,y满足约束条件则目标函数z1=2x-y的最大值是________,目标函数z2=x2+y2的最小值是________.‎ 解析 在平面直角坐标系内画出题中的不等式组表示的平面区域,其是以(2,0),(0,2),(4,2)为顶点的三角形区域(包含边界),易得当目标函数z1=2x-y经过平面区域内的点(4,2)时,取得最大值2×4-2=6.z2=x2+y2表示平面区域内的点到原点的距离的平方,易得原点到直线x+y=2的距离的平方为所求最小值,即z2=x2+y2的最小值为=2.‎ 答案 6 2‎ ‎14.若x,y满足约束条件则|x+y|-|x-y|的取值范围为________.‎ 解析 根据约束条件画出可行域如图中△ABC区域(含边界),A(1,3),B(-1,1),C(3,1),且△ABC区域在直线lOB:x+y=0的右侧,所以|x+y|-|x-y|=x+y-|x-y|=取BC的中点为M,AC的中点为N,由图可知直线lMN:x-y=0将可行域分割为两部分,其中M(1,1),N(2,2),当x≥y时,对应区域为△MNC区域(含边界),2≤2y≤4,当x