- 313.50 KB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
板块命题点专练(十一) 立体几何
(研近年高考真题——找知识联系,找命题规律,找自身差距)
命题点一 空间几何体的三视图及表面积与体积
命题指数:☆☆☆☆☆ 难度:中 题型:选择题、填空题、解答题
1.(2013·四川高考)一个几何体的三视图如图所示,则该几何体可以是( )
A.棱柱 B.棱台
C.圆柱 D.圆台
2.(2012·新课标全国卷)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为( )
A.π B.4π
C.4π D.6π
3.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )
A.16+8π B.8+8π
C.16+16π D.8+16π
4.(2014·四川高考)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )
A.3 B.2
C. D.1
5.(2014·浙江高考)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )
A.90 cm2 B.129 cm2
C.132 cm2 D.138 cm2
6.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
A. B.
C. D.
7.(2014·江苏高考)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是________.
8.(2012·新课标全国卷)如图,三棱柱ABCA1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.
(1)证明:平面BDC1⊥平面BDC;
(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.
命题点二 组合体的“接”“切”的综合问题
命题指数:☆☆☆ 难度:中 题型:选择题、填空题
1.(2014·湖南高考)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )
A.1 B.2
C.3 D.4
2.(2013·辽宁高考)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )
A. B.2
C. D.3
3.(2012·辽宁高考)已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2的正方形.若PA=2,则△OAB的面积为________.
命题点三 直线、平面平行与垂直的判定与性质
命题指数:☆☆☆☆☆ 难度:中 题型:选择题、解答题
1.(2014·辽宁高考)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )
A.若m∥α,n∥α,则m∥n
B.若m⊥α,n⊂α,则m⊥n
C.若m⊥α,m⊥n,则n∥α
D.若m∥α,m⊥n,则n⊥α
2.(2013·新课标全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )
A.α∥β且l∥α B.α⊥β且l⊥β
C.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l
3.(2012·浙江高考)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,( )
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直
4.(2014·福建高考)如图,三棱锥 ABCD中,AB⊥平面BCD,CD⊥BD .
(1)求证:CD⊥平面ABD;
(2)若AB=BD=CD=1,M为AD中点,求三棱锥AMBC的体积.
5.(2012·北京高考)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
答案
命题点一
1.选D 由俯视图可排除A,B,由正视图可排除C,选D.
2.选B 设球的半径为R,由球的截面性质得R==,所以球的体积V=πR3=4π.
3.选A 该几何体是个组合体,其下面是半个圆柱,上面是个长方体.该几何体的体积为V=×π×22×4+4×2×2=16+8π.
4.选D 由俯视图可知三棱锥的底面是一个边长为2的正三角形,底面面积为×2×2×sin 60°=,由侧视图可知三棱锥的高为,故此三棱锥的体积V=××=1,故选D.
5.选D 由三视图画出几何体的直观图,如图所示,则此几何体的表面积S=S1-S正方形+S2+2S3+S斜面,其中S1是长方体的表面积,S2是三棱柱的水平放置的一个侧面的面积,S3是三棱柱的一个底面的面积,则S=(4×6+3×6+3×4)×2-3×3+3×4+2××4×3+5×3=138(cm2),选D.
6.选C 原毛坯的体积V=(π×32)×6=54π(cm3),由三视图可知该零件为两个圆柱的组合体,
其体积V′=V1+V2=(π×22)×4+(π×32)×2=34π(cm3),
故所求比值为1-=.
7.解析:设甲、乙两个圆柱的底面半径分别是r1,r2,母线长分别是l1,l2.则由=可得=.又两个圆柱的侧面积相等,即2πr1l1=2πr2l2,则==,所以==×=.
答案:
8.解:(1)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.
又DC1⊂平面ACC1A1,所以DC1⊥BC.
由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.
又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.
(2)设棱锥BDACC1的体积为V1,AC=1.由题意得
V1=××1×1=.
又三棱柱ABCA1B1C1的体积V=1,
所以(V-V1)∶V1=1∶1.
故平面BDC1分此棱柱所得两部分体积的比为1∶1.
命题点二
1.选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r===2,故选B.
2.选C 如图,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA= =.
3.解析:把球O的内接四棱锥还原为长方体,则球O的直径为长方体的体对角线,则(2R)2=(2)2+(2)2+(2)2,可得R2=12.△OAB中,设AB边上的高为h,则h2=R2-()2=9,则h=3,所以S△OAB=×2×3=3.
答案:3
命题点三
1.选B 对于选项A,若m∥α,n∥α,则m与n可能相交、平行或异面,A错误;显然选项B正确;对于选项C,若m⊥α,m⊥n,则n⊂α或n∥α,C错误;对于选项D,若m∥α,m⊥n,则n∥α或n⊂α或n与α相交,D错误.故选B.
2.选D 由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l,故选D.
3.选B 对于AB⊥CD,因为BC⊥CD,可得CD⊥平面ACB,因此有CD⊥AC.因为AB=1,BC=,CD=1,所以AC=1,所以存在某个位置,使得AB⊥CD.
4.解:(1)证明:∵AB⊥平面BCD,CD⊂平面BCD,
∴AB⊥CD.
又∵CD⊥BD,AB∩BD=B,
AB⊂平面ABD,BD⊂平面ABD,
∴CD⊥平面ABD.
(2)法一:由AB⊥平面BCD,得AB⊥BD,
∵AB=BD=1,∴S△ABD=.
∵M是AD的中点,
∴S△ABM=S△ABD=.
由(1)知,CD⊥平面ABD,
∴三棱锥CABM的高h=CD=1,
因此三棱锥AMBC的体积
VAMBC=VCABM=S△ABM·h=.
法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,如图,过点M作MN⊥BD交BD于点N,则MN⊥平面BCD,且MN=AB=,又CD⊥BD,BD=CD=1,
∴S△BCD=.
∴三棱锥AMBC的体积
VAMBC=VABCD-VMBCD
=AB·S△BCD-MN·S△BCD
=.
5.解:(1)证明:因为D,E分别为AC,AB的中点,
所以DE∥BC.
又因为DE⊄平面A1CB,
所以DE∥平面A1CB.
(2)证明:由已知得AC⊥BC且DE∥BC,
所以DE⊥AC.
所以DE⊥A1D,DE⊥CD.
又A1D∩CD=D,所以DE⊥平面A1DC.
而A1F⊂平面A1DC,所以DE⊥A1F.
又因为A1F⊥CD,CD∩DE=D,
所以A1F⊥平面BCDE.所以A1F⊥BE.
(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:
如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.
又因为DE∥BC,所以DE∥PQ.
所以平面DEQ即为平面DEP.
由(2)知,DE⊥平面A1DC,所以DE⊥A1C.
又因为P是等腰三角形DA1C底边A1C的中点,
所以A1C⊥DP.所以A1C⊥平面DEP.
从而A1C⊥平面DEQ.
故线段A1B上存在点Q,使得A1C⊥平面DEQ.