- 313.00 KB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 二元一次不等式(组)与简单的线性
规划问题
A级 基础演练
(时间:30分钟 满分:55分)
一、选择题(每小题5分,共20分)
1.(2012·山东)设变量x,y满足约束条件则目标函数z=3x-y的取值范围是 ( ).
A. B.
C. D.
解析 作出不等式组表示的可行域,如图阴影部分所示,作直线3x-y=0,并向上、下平移,由图可得,当直线过点A时,z=3x-y取最大值;当直线过点B时,z=3x-y取最小值.由解得A(2,0);由解得B.
∴zmax=3×2-0=6,zmin=3×-3=-.
∴z=3x-y的取值范围是.
答案 A
2.(2011·广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1)则z=·的最大值为 ( ).
A.4 B.3 C.4 D.3
解析 如图作出区域D,目标函数z=x+y过点B(,2)时取最大值,故z的最大值为×+2=4,故选C.
答案 C
3.(2013·淮安质检)若不等式组
表示的平面区域是一个三角形,则a的取值范围是 ( ).
A.(-∞,5) B.[7,+∞)
C.[5,7) D.(-∞,5)∪[7,+∞)
解析 画出可行域,知当直线y=a在x-y+5=0与y轴的交点(0,5)和x-y+5=0与x=2的交点(2,7)之间移动时平面区域是三角形.故5≤a<7.
答案 C
4.(2013·洛阳一模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润1万元,每吨乙产品可获得利润3万元,该企业在某个生产周期内甲产品至少要生产1吨,乙产品至少要生产2吨,消耗A原料不超过13吨,消耗B原料不超过18吨,那么该企业在这个生产周期内获得最大利润时甲产品的产量应是 ( ).
A.1吨 B.2吨 C.3吨 D.吨
解析 设该企业在这个生产周期内生产x吨甲产品,生产y吨乙产品,x、y满足的条件为
所获得的利润z=x+3y,作出如图所示的可行域.
作直线l0:x+3y=0,平移直线l0
,显然,当直线经过点A时所获利润最大,此时甲产品的产量为1吨.
答案 A
二、填空题(每小题5分,共10分)
5.(2012·大纲全国)若x,y满足约束条件则z=3x-y的最小值为________.
解析 画出可行域,如图所示,将直线y=3x-z移至点A(0,1)处直线在y轴上截距最大,zmin=3×0-1=-1.
答案 -1
6.(2012·安徽)若x,y满足约束条件则x-y的取值范围是________.
解析 记z=x-y,则y=x-z,所以z为直线y=x-z在y轴上的截距的相反数,画出不等式组表示的可行域如图中△ABC区域所示.结合图形可知,当直线经过点B(1,1)时,x-y取得最大值0,当直线经过点C(0,3)时,x-y取得最小值-3.
答案 [-3,0]
三、解答题(共25分)
7.(12分)(2013·合肥模拟)画出不等式组表示的平面区域,并回答下列问题:
(1)指出x、y的取值范围;
(2)平面区域内有多少个整点?
解 (1)不等式x-y+5≥0表示直线x-y+5=0上及其右下方的点的集合,x+y≥0表示直线x+y=0上及其右上方的点的集合,x≤3表示直线x=3上及其左方的点的集合.
所以,不等式组
表示的平面区域如图所示.
结合图中可行域得x∈,y∈[-3,8].
(2)由图形及不等式组知
当x=3时,-3≤y≤8,有12个整点;
当x=2时,-2≤y≤7,有10个整点;
当x=1时,-1≤y≤6,有8个整点;
当x=0时,0≤y≤5,有6个整点;
当x=-1时,1≤y≤4,有4个整点;
当x=-2时,2≤y≤3,有2个整点;
∴平面区域内的整点共有2+4+6+8+10+12=42(个).
8.(13分)制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.若投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
解 设投资人分别用x万元、y万元投资甲、乙两个项目,
由题意知目标函数z=x+0.5y.
上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.
将z=x+0.5y变形为y=-2x+2z,这是斜率为-2、随z变化的一组平行线,当直线y=-2x+2z经过可行域内的点M时,直线y=-2x+2z在y轴上的截距2z最大,z也最大.
这里M点是直线x+y=10和0.3x+0.1y=1.8的交点.
解方程组得x=4,y=6,
此时z=4+0.5×6=7(万元).
∴当x=4,y=6时,z取得最大值,
所以投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.
B级 能力突破(时间:30分钟 满分:45分)
一、选择题(每小题5分,共10分)
1.(2013·临沂一模)实数x,y满足若目标函数z=x+y取得最大值4,则实数a的值为 ( ).
A.4 B.3 C.2 D.
解析 作出可行域,由题意可知可行域为△ABC内部及边界,y=-x+z,则z的几何意义为直线在y轴上的截距,将目标函数平移可知当直线经过点A时,目标函数取得最大值4,此时A点坐标为(a,a),代入得4=a+a=2a,所以a=2.
答案 C
2.(2012·四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是 ( ).
A.1 800元 B.2 400元 C.2 800元 D.3 100元
解析 设某公司生产甲产品x桶,生产乙产品y桶,获利为z元,则x,y满足的线性约束条件为目标函数z=300x+400y.
作出可行域,如图中四边形OABC的边界及其内部整点.作直线l0:3x+4y=0,平移直线l0经可行域内点B时,z取最大值,由得B(4,4),满足题意,所以zmax=4×300+4×400=2 800.
答案 C
二、填空题(每小题5分,共10分)
3.(2013·咸阳一模)设实数x、y满足则的最大值是________.
解析 不等式组确定的平面区域如图阴影部分.
设=t,则y=tx,求的最大值,即求y=tx的斜率的最大值.显然y=tx过A点时,t最大.
由解得A.
代入y=tx,得t=.所以的最大值为.
答案
4.(2011·湖南)设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为________.
解析 目标函数z=x+my可变为y=-x+,
∵m>1,∴-1<-<0,z与同时取到相应的最大值,如图,当目标函数经过点P时,取最大值,∴+<2,又m>1,得1