- 85.00 KB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2讲 一元二次不等式及其解法
A级 基础演练
(时间:30分钟 满分:55分)
一、选择题(每小题5分,共20分)
1.(2012·南通二模)已知f(x)=则不等式f(x)2,因此x<0.
综上,x<4.故f(x)0,不等式-c0,∴-0的解集是 ( ).
A.(0,1)∪(,+∞) B.(-,1)∪(,+∞)
C.(,+∞) D.(-,)
解析 原不等式等价于或
∴x>或00的解集为,则不等式-cx2+2x-a>0的解集为________.
解析 由ax2+2x+c>0的解集为知a<0,且-,为方程ax2+2x+c=0的两个根,由根与系数的关系得-+=-,-×=,解得a=-12,c=2,∴-cx2+2x-a>0,即2x2-2x-12<0,其解集为(-2,3).
答案 (-2,3)
6.在实数集上定义运算⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意实数x恒成立,则实数a的取值范围是________.
解析 由题意知(x-a)⊗(x+a)=(x-a)(1-x-a)=-x2+x+a2-a.故-x2+x+a2-a<1对任意x∈R都成立.
即-x2+x<-a2+a+1对任意x∈R都成立.
而-x2+x=-2+≤,只需-a2+a+1>即可,即4a2-4a-3<0,解得-
4的解集为{x|x<1或x>b},
(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc<0.
解 (1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.
由根与系数的关系,得解得
(2)由(1)知不等式ax2-(ac+b)x+bc<0为x2-(2+c)x+2c<0,即(x-2)(x-c)<0.
①当c>2时,不等式(x-2)(x-c)<0的解集为{x|22时,不等式的解集为{x|20,
即Δ=(m-2)2-4(m-1)(-1)>0,得m2>0,
所以m≠1且m≠0.
(2)在m≠0且m≠1的条件下,
因为+==m-2,
所以+=2-
=(m-2)2+2(m-1)≤2.
得m2-2m≤0,所以0≤m≤2.
所以m的取值范围是{m|01的解集为 ( ).
A.(-∞,-1)∪(0,+∞) B.(-∞,0)∪(1,+∞)
C.(-1,0) D.(0,1)
解析 ∵f(x)=ax2-(a+2)x+1,Δ=(a+2)2-4a=a2+4>0,
∴函数f(x)=ax2-(a+2)x+1必有两个不同的零点,
又f(x)在(-2,-1)上有一个零点,则f(-2)f(-1)<0,
∴(6a+5)(2a+3)<0,∴-1即为-x2-x>0,
解得-10对x∈R恒成立,则关于t的不等式a2t+10对x∈R恒成立,
则Δ=4a2-4a<0,所以0t2+2t-3>0,
即所以10恒成立,则b的取值范围是________.
解析 依题意,f(x)的对称轴为x=1,且开口向下,
∴当x∈[-1,1]时,f(x)是增函数.
若f(x)>0恒成立,则f(x)min=f(-1)=-1-2+b2-b+1>0,即b2-b-2>0,∴(b-2)(b+1)>0,∴b>2或b<-1.
答案 (-∞,-1)∪(2,+∞)
4.(2012·浙江)设a∈R,若x>0时均有[(a-1)x-1](x2-ax-1)≥0,则a=________.
解析 显然a=1不能使原不等式对x>0恒成立,故a≠1且当x1=,a≠1时原不等式成立.对于x2-ax-1=0,设其两根为x2,x3,且x20.当x>0时,原不等式恒成立,故x1=满足方程x2-ax-1=0,代入解得a=或a=0(舍去).
答案
三、解答题(共25分)
5.(12分)设函数f(x)=a2ln x-x2+ax,a>0.
(1)求f(x)的单调区间;
(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.
注 e为自然对数的底数.
解 (1)因为f(x)=a2ln x-x2+ax,其中x>0,
所以f′(x)=-2x+a=-.
由于a>0,所以f(x)的增区间为(0,a),减区间为(a,+∞).
(2)由题意得,f(1)=a-1≥e-1,即a≥e.
由(1)知f(x)在[1,e]内单调递增,
要使e-1≤f(x)≤e2,对x∈[1,e]恒成立,
只要解得a=e.
6.(13分)(2013·金华模拟)设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x
的两个零点为m,n(m0的解集;
(2)若a>0,且00,即a(x+1)(x-2)>0.
当a>0时,不等式F(x)>0的解集为{x|x<-1或x>2};当a<0时,不等式F(x)>0的解集为{x|-10,且00.
∴f(x)-m<0,即f(x)