- 397.50 KB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
[基础题组练]
1.(2020·山西吕梁 4 月模拟)函数 f(x)=|x|sin x 的图象大致是( )
解析:选 A.函数 f(x)=|x|sin x 为奇函数,图象关于原点对称,可排除,B,C;又 f(π)
=|π|sin π=0,故排除 D.故选 A.
2.已知 f(x)=
-2x,-1≤x≤0,
x,0<x≤1,
则下列函数的图象错误的是( )
解析:选 D.在坐标平面内画出函数 y=f(x)的图象,将函数 y=f(x)的图象向右平移 1 个
单位长度,得到函数 y=f(x-1)的图象,因此 A 正确;作函数 y=f(x)的图象关于 y 轴的对称
图形,得到 y=f(-x)的图象,因此 B 正确;y=f(x)在[-1,1]上的值域是[0,2],因此 y=|f(x)|
的图象与 y=f(x)的图象重合,C 正确;y=f(|x|)的定义域是[-1,1],且是偶函数,当 0≤x≤1
时,y=f(|x|)= x,这部分的图象不是一条线段,因此选项 D 不正确.故选 D.
3.(2020·湖南娄底二模)函数 f(x)=(ex-e-x)cos x
x2
的部分图象大致是( )
解析:选 A.f(x)的定义域(-∞,0)∪(0,+∞),且 f(-x)=-f(x),所以 f(x)是奇函数,
排除 C 和 D,因为 f(π)<0,所以排除 B.故选 A.
4.
若函数 f(x)=(ax2+bx)ex 的图象如图所示,则实数 a,b 的值可能为( )
A.a=1,b=2
B.a=1,b=-2
C.a=-1,b=2
D.a=-1,b=-2
解析:选 B.令 f(x)=0,则(ax2+bx)ex=0,解得 x=0 或 x=-b
a
,由图象可知,-b
a
>1,
又当 x>-b
a
时,f(x)>0,故 a>0,结合选项知 a=1,b=-2 满足题意,故选 B.
5.如图所示,在△ABC 中,∠B=90°,AB=6 cm,BC=8 cm,点 P 以 1 cm/s 的速度
沿 A→B→C 的路径向 C 移动,点 Q 以 2 cm/s 的速度沿 B→C→A 的路径向 A 移动,当点 Q
到达 A 点时,P,Q 两点同时停止移动.记△PCQ 的面积关于移动时间 t 的函数为 S=f(t),
则 f(t)的图象大致为( )
解析:选 A.当 0≤t≤4 时,点 P 在 AB 上,点 Q 在 BC 上,此时 PB=6-t,CQ=8-2t,
则 S=f(t)=1
2QC×BP=1
2(8-2t)×(6-t)=t2-10t+24;当 4<t≤6 时,点 P 在 AB 上,点 Q
在 CA 上,此时 AP=t,P 到 AC 的距离为 4
5t,CQ=2t-8,则 S=f(t)=1
2QC×4
5t=1
2(2t-8)×4
5t
=4
5(t2-4t);当 6<t≤9 时,点 P 在 BC 上,点 Q 在 CA 上,此时 CP=14-t,QC=2t-8,
则 S=f(t)=1
2QC×CPsin ∠ACB=1
2(2t-8)(14-t)×3
5
=3
5(t-4)(14-t).综上,函数 f(t)对应的
图象是三段抛物线,依据开口方向得图象是 A,故选 A.
6.若函数 f(x)= ax+b,x<-1,
ln(x+a),x≥-1
的图象如图所示,则 f(-3)等于________.
解析:由图象可得 a(-1)+b=3,ln(-1+a)=0,所以 a=2,b=5,
所以 f(x)= 2x+5,x<-1,
ln(x+2),x≥-1,
故 f(-3)=2×(-3)+5=-1.
答案:-1
7.定义在 R 上的奇函数 f(x),满足 f
-1
2 =0,且在(0,+∞)上是减少的,则 xf(x)>0
的解集为________.
解析:因为函数 f(x)是奇函数,在(0,+∞)上是减少的,且 f
-1
2 =0,
所以 f
1
2 =0,且在区间(-∞,0)上是减少的,
因为当 x<0,若-1
2
<x<0 时,f(x)<0,此时 xf(x)>0,
当 x>0,若 0<x<1
2
时,f(x)>0,此时 xf(x)>0,综上 xf(x)>0 的解集为 -1
2
,0 ∪ 0,1
2 .
答案: -1
2
,0 ∪ 0,1
2
8.给定 min{a,b}= a,a≤b,
b,b<a,
已知函数 f(x)=min{x,x2-4x+4}+4,若动直线 y=m
与函数 y=f(x)的图象有 3 个交点,则实数 m 的取值范围为________.
解析:函数 f(x)=min{x,x2-4x+4}+4 的图象如图所示,由于直线 y=m 与函数 y=f(x)
的图象有 3 个交点,数形结合可得 m 的取值范围为(4,5).
答案:(4,5)
9.已知 y=f(x)是定义在 R 上的偶函数,当 x≥0 时,f(x)=x2-2x.
(1)求当 x<0 时,f(x)的解析式;
(2)作出函数 f(x)的图象,并指出其单调区间;
(3)求 f(x)在[-2,5]上的最小值,最大值.
解:(1)设 x<0,则-x>0,
因为 x>0 时,f(x)=x2-2x.
所以 f(-x)=(-x)2-2·(-x)=x2+2x.
因为 y=f(x)是 R 上的偶函数,
所以 f(x)=f(-x)=x2+2x.
(2)函数 f(x)的图象如图所示:
由图可得:函数 f(x)的增区间为(-1,0)和(1,+∞);减区间为(-∞,-1)和(0,1).
(3)由(2)中函数图象可得:在[-2,5]上,
当 x=±1 时,取最小值-1,
当 x=5 时,取最大值 15.
10.已知函数 f(x)=x|m-x|(x∈R),且 f(4)=0.
(1)求实数 m 的值;
(2)作出函数 f(x)的图象;
(3)根据图象指出 f(x)的减区间;
(4)若方程 f(x)=a 只有一个实数根,求 a 的取值范围.
解:(1)因为 f(4)=0,所以 4|m-4|=0,即 m=4.
(2)f(x)=x|x-4|
= x(x-4)=(x-2)2-4,x≥4,
-x(x-4)=-(x-2)2+4,x<4,
f(x)的图象如图所示.
(3)f(x)的减区间是[2,4].
(4)从 f(x)的图象可知,当 a>4 或 a<0 时,f(x)的图象与直线 y=a 只有一个交点,方程 f(x)
=a 只有一个实数根,即 a 的取值范围是(-∞,0)∪(4,+∞).
[综合题组练]
1.函数 f(x)是周期为 4 的偶函数,当 x∈[0,2]时,f(x)=x-1,则不等式 xf(x)>0 在[-
1,3]上的解集为( )
A.(1,3) B.(-1,1)
C.(-1,0)∪(1,3) D.(-1,0)∪(0,1)
解析:选 C.f(x)的图象如图所示.
当 x∈(-1,0)时,由 xf(x)>0 得 x∈(-1,0);
当 x∈(0,1)时,由 xf(x)>0 得 x∈∅.
当 x∈(1,3)时,由 xf(x)>0 得 x∈(1,3).
故 x∈(-1,0)∪(1,3).
2.(2020·山西四校联考)已知函数 f(x)=|x2-1|,若 00,且 a≠1)对于任意的 x>2 恒成立,求 a 的取值
范围.
解:不等式 4ax-1<3x-4 等价于 ax-1<3
4x-1.
令 f(x)=ax-1,g(x)=3
4x-1,
当 a>1 时,在同一坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件;
当 0