• 482.00 KB
  • 2021-06-19 发布

2017-2018学年辽宁省本溪市第一中学高二上学期第一次月考数学文试题

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
本溪市第一中学2017-2018学年高二第一次月考数学(文)试卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上)‎ ‎1.设集合U={0,1,2,3,4,5},A={1,2},B={x∈Z|x2﹣5x+4<0},则CU(A∪B)=(  )‎ A.{0,1,2,3} B.{5} C.{1,2,4} D.{0,4,5}‎ ‎2下列各式错误的是( )‎ A. B. C. D.‎ ‎3. 已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是( ) A.0 B‎.1 ‎ C.2 D. 4‎ ‎4.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有堩厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现有程序框图描述,如图所示,则输出结果( )‎ ‎ A. 4 B. ‎5 C. 2 D. 3‎ ‎5.一个几何体的三视图如图所示,其中正(主)视图和侧(左)视图是腰长为l的两个全等的等腰直角三角形,则该多面体的各条棱中最长棱的长度为( )‎ A. B. C. D.‎ ‎6.对于任意实数x,不等式( a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是( )‎ A. (-∞,2) B. (-∞,2]‎ C. (-2,2) D. (-2,2]‎ ‎7. 已知直线过圆的圆心,且与直线垂直,则直线 的方程为( )‎ A. B. C. D.‎ ‎8. 平面向量与的夹角为60°,=(2,0),||=1,则|+2|=( )‎ 第9题图 A. B. C.4 D.12‎ ‎9. 某函数部分图像如图所示,它的函数解析式可能是( )‎ A. B.‎ C. D.‎ ‎10.函数y=sin在x=2处取得最大值,则正数ω的最小值为( )‎ A. B. C. D. ‎11若奇函数在内是减函数,且, 则不等式的解集为( )‎ A. B. ‎ C. D. ‎ ‎12已知数列{an}的通项公式是=sin,则=( )‎ A. B. C. D. 二.填空题(本大题共4小题,每小题5分,共20分)‎ ‎13.存在使不等式成立,则的取值范围是 ‎ ‎14.若正实数x,y 满足2x+y+6=xy , 则xy 的最小值是 ‎ ‎15. 实数满足,则z=x-y的最大值是________‎ ‎16. 已知数列中,且,则= ‎ 三.解答题 ‎17. (本题满分12分)已知向量,=,函数,‎ ‎(I)求函数的解析式及其单调递增区间;‎ ‎(II)当x∈时,求函数的值域.‎ ‎18.(本题满分12分) 函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.‎ ‎ (1)求函数的解析式;‎ ‎ (2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.‎ ‎19. (本题满分12分)如图,在四棱锥S ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且点P为AD的中点,点Q为SB的中点.‎ ‎(1)求证:CD⊥平面SAD.‎ ‎(2)求证:PQ∥平面SCD.‎ ‎(3)若SA=SD,点M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?若存在,请说明其位置,并加以证明;若不存在,请说明理由.‎ ‎20.(本小题满分10分)已知数列中,,,数列中,,其中;‎ ‎(1)求证:数列是等差数列;‎ ‎(2)若是数列的前n项和,求的值.‎ ‎21. (本题满分10分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:‎ ‎(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;‎ ‎(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;‎ ‎(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.‎ ‎22(本题满分12分)已知函数在R是奇函数。‎ ‎(1)求 ‎(2)对于x∈(0,1],不等式恒成立,求实数s的取值范围。‎ ‎(3)令,若关于x的方程有唯一实数解,求实数m的取值范围。‎ 高二月考数学(文科)答案 ‎1~12 DCDABD DBCDDB ‎13、 14、 18 15、2 16、 ‎ ‎17(1),      ‎ 令,解得:,所以函数的单调递增区间为()。      ‎ ‎(2)因为,所以,即。    ‎ 则,则函数的值域为。   ‎ ‎18.(1)由图知,解得,因为,所以(),即()。由于,因此,     所以,所以,即函数的解析式为。      ‎ ‎(2)因为,所以(*),因为在中,有,,代入(*)式,化简得,即,所以或(舍),,      ‎ 由正弦定理得,解得,由余弦定理得,所以,(当且仅当时,等号成立),所以,所以的面积最大值为。     ‎ ‎19题 略 ‎20.解:(1)数列中,,,数列中,,其中 ‎., , ═常数,数列是等差数列,首项为1,公差为1, (2) , 即 ‎21.(1)根据直方图分数小于的概率为。‎ ‎(2)根据直方图知分数在的人数为(人),分数小于的学生有人,所以样本中分数在区间内的人数为(人),所以总体中分数在区间内的人数估计为(人)。‎ ‎(3)因为样本中分数不小于的男女生人数相等,所以其中的男生有(人),女生有人。因为样本中有一半男生的分数不小于,所以样本中分数小于的男生有人,女生有(人)。由于抽样方式为分层抽样,所以总体中男生与女生人数之比为。‎ ‎22(1)根据题意知.即, 所以.此时, 而, 所以为奇函数,故为所求. (2)由(1)知, ‎ 因为,所以,, 故恒成立等价于恒成立, 因为,所以只需即可使原不等式恒成立. 故s的取值范围是. (3)因为. 所以. 整理得. 令,则问题化为有一个正根或两个相等正根. 令,则函数在上有唯一零点. 所以或, 由得, 易知时,符合题意; 由计算得出, 所以. 综上m的取值范围是.‎ 解析:‎

相关文档