- 27.53 KB
- 2021-06-20 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第十一章计数原理
11.1分类加法计数原理与分步乘法计数原理
专题1
分类加法计数原理
■(2015河北邯郸二模,分类加法计数原理,填空题,理13)我们把中间位数上的数字最大,而面两边依次减小的多位数称为“凸数”.如132、341等,那么由1、2、3、4、5可以组成无重复数字的三位凸数的个数是 .(用数字作答)
解析:根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,
第一类,当中间数字为“3”时,此时有2种(132,231);
第二类,当中间数字为“4”时,从1,2,3中任取两个放在4的两边,故有=6种;
第三类,当中间数字为“5”时,从1,2,3,4中任取两个放在5的两边,故有=12种;
根据分类计数原理,得到由1,2,3,4,5可以组成无重复数字的三位凸数的个数是2+6+12=20种.
答案:20
11.2排列与组合
专题3
排列、组合的综合应用
■(2015辽宁锦州二模,排列、组合的综合应用,选择题,理8)分配4名水暖工去3个不同的居民家里检查暖气管道.要求4名水暖工都分配出去,并每名水暖工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有( )
A.种 B.种 C.种 D.种
解析:根据题意,分配4名水暖工去3个不同的居民家里,要求4名水暖工都分配出去,且每个居民家都要有人去检查;
则必有2名水暖工去同一居民家检查,
即要先从4名水暖工中抽取2人,有种方法,
再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,有种情况,
由分步计数原理,可得共种不同分配方案.
答案:C
■(2015江西宜春奉新一中高考模拟,排列、组合的综合应用,填空题,理13)有4名优秀学生A,B,C,D全部被保送到北京大学、清华大学、复旦大学,每所学校至少去一名,则不同的保送方案共有 种.
解析:第一步从4名优秀学生选出2个组成复合元素共有种,再把3个元素(包含一个复合元素)保送到甲、乙、丙3所学校有种,
根据分步计数原理,不同保送方案共有=36种.
答案:36
11.3二项式定理
专题1
通项及其应用
■(2015江西南昌三模,通项及其应用,填空题,理13)已知等比数列{an}的第5项是二项式展开式的常数项,则a3a7= .
答案:
■(2015河北保定二模,通项及其应用,填空题,理14)二项式的展开式中第3项与第4项的二项式系数相等,则展开式的第3项的系数为 .
解析:由题意可得,∴n=5.
则展开式的第3项的系数为·23·(-1)2=80.
答案:80
■(2015河北衡水中学高三一调,通项及其应用,填空题,理13)已知n=dx,那么展开式中含x2项的系数为 .
解析:根据题意,n=dx=ln x=6,
则中,由二项式定理的通项公式Tr+1=,当r=2时,可知含x2项的系数为×9=135.
答案:135
■(2015辽宁丹东二模,通项及其应用,选择题,理3)若的二项展开式中x7的系数为-10,则实数a=( )
A.-2 B.2 C.-1 D.1
解析:由Tr+1=(x2)5-r=ar·x10-3r,
令10-3r=7,解得r=1.
再由a1·=-10,解得a=-2.
答案:A
■(2015辽宁丹东一模,通项及其应用,填空题,理13)的展开式中的x2y3系数是 .
解析:的展开式的通项公式为Tr+1=·(-2)r··x5-r·yr,
令r=3,可得x2y3系数是-20.
答案:-20
■(2015辽宁锦州二模,通项及其应用,填空题,理13)设函数f(x)=(x+a)n,其中n=6cos xdx,=-3,则f(x)的展开式中的x4系数为 .
解析:由n=6cos xdx,=-3,得
n=6sinx=6,=-3,a=-2.
∴f(x)=(x-2)6.
由Tr+1=x6-r(-2)r,令6-r=4,得r=2.
∴f(x)的展开式中的x4系数为(-2)2·=60.
答案:60
■(2015辽宁锦州一模,通项及其应用,填空题,理13)的二项展开式中,x2的系数是 (用数字作答).
解析:Tr+1=x5-r=(-2)r,
令5-r=2,
所以r=2.
所以x2的系数为(-2)2=40.
答案:40