• 94.72 KB
  • 2021-06-20 发布

专题8-1 空间几何体的表面积与体积(讲)-2018年高考数学一轮复习讲练测(江苏版)

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ ‎ ‎【考纲解读】‎ 内 容 要 求 备注 A  ‎ B  ‎ C  ‎ 空间几何体  ‎ 柱、锥、台、球及其简单组合体  ‎ ‎√  ‎ ‎   ‎ ‎   ‎ ‎1.认识柱、锥、台、球及其简单组合体的结构特征.能正确描述现实生活中简单物体的结构.‎ ‎2.了解球、棱柱、棱锥、台的表面积和体积的计算公式.(不要求记忆台体的体积公式)‎ 柱、锥、台、球的表面积与体积  ‎ ‎√  ‎ ‎   ‎ ‎   ‎ ‎【知识清单】‎ 考点1 几何体的表面积 圆柱的侧面积 ‎ 圆柱的表面积 ‎ 圆锥的侧面积 ‎ 圆锥的表面积 ‎ 圆台的侧面积 ‎ 圆台的表面积 ‎ 球体的表面积 ‎ 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.‎ 把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.‎ 考点2 几何体的体积 圆柱的体积 ‎ 圆锥的体积 ‎ 圆台的体积 ‎ 球体的体积 ‎ ‎ 正方体的体积 ‎ ‎ 正方体的体积 ‎ ‎【考点深度剖析】‎ 柱、锥、台、球等简单几何体的面积与体积(尤其是体积)是高考热点.‎ ‎【重点难点突破】‎ 考点1 几何体的表面积 ‎【1-1】【苏州市2014届高三调研测试】若圆锥底面半径为1,高为2,则圆锥的侧面积为 ▲ .‎ ‎【答案】‎ ‎【1-2】【2012·江苏高考】如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥ABB1D1D的体积为________cm3.‎ ‎【答案】6‎ ‎【解析】由题意得VA-BB1D1D=VABD-A1B1D1=××3×3×2=6 cm2.‎ ‎【思想方法】 ‎ 多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.‎ 圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.‎ ‎【温馨提醒】多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理;圆锥、圆柱、圆台的侧面是曲面,计算侧面积或长度时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和. (1)找准几何体中各元素间的位置关系及数量关系.(2)注意组合体的表面积问题中重合部分的处理.‎ 考点2 几何体的体积 ‎【2-1】【江苏省南京市2014届高三9月学情调研】若一个圆柱的侧面展开图是边长为2的正方形,则此 圆柱的体积为 .‎ ‎【答案】.‎ ‎【2-2】【苏州市2014届高三暑假自主学习测试】如图,在直四棱柱中,点分别在上,且,,点到的距离之比为,则三棱锥和的体积比 .‎ ‎【答案】‎ ‎【解析】点到的距离之比为,所以,又直四棱柱中,,,所以,于是.‎ ‎【2-3】【江苏省诚贤中学2014届高三数学月考试题】正三棱锥中,,,分别是棱上的点,为边的中点,,则三角形的面为        .‎ ‎【答案】 ‎ ‎【解析】‎ ‎【思想方法】若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.‎ ‎【温馨提醒】(1)计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.‎ ‎(2)注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.‎ ‎(3)注意组合体的组成形式及各部分几何体的特征.‎ 考点3 几何体的展开、折叠、切、截问题 ‎【3-1】(2014·南通期末)正方体ABCDA1B1C1D1的棱长为2,则四面体AB1CD1的外接球的体积为________.‎ ‎【答案】36π ‎【解析】四面体AB1CD1的外接球即为正方体ABCDA1B1C1D1的外接球,故正方体的外接球的直径为=6,故V=πR3=π×(6÷2)3=36π. ‎ ‎【3-2】如图所示,已知三棱柱ABC A1B‎1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1 ABC1的体积为________.‎ ‎【答案】 ‎【解析】三棱锥B1 ABC1的体积等于三棱锥A B1BC1的体积,三棱锥A B1BC1的高为,底面积为,故其体积为××=.‎ ‎【思想方法】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.‎ 有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.‎ 研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.‎ ‎【温馨提醒】简单几何体的表面积和体积计算是高考的一个常见考点,解决这类问题,首先要熟练掌握各类简单几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧、把一个简单几何体纳入一个更大的几何体中的补形技巧、对旋转体作其轴截面的技巧、通过方程或方程组求解的技巧等,这是化解简单几何体面积和体积计算难点的关键.‎ ‎【易错试题常警惕】‎ ‎ 求空间几何体的表面积应注意的问题 ‎(1)求组合体的表面积时,要注意各几何体重叠部分的处理.‎ ‎(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.‎ ‎ ‎

相关文档