• 520.00 KB
  • 2021-06-21 发布

数学理卷·2018届安徽省蚌埠二中高三上学期期中考试(2017

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
蚌埠二中2017-2018学年度高三第一学期期中考试 ‎ 数学试题(理科)‎ 试卷满分:150分 考试时间:120分钟 注意:选择题的答案必须用2B铅笔涂在答题卡中相应的位置,否则,该大题不记分 ‎ 第Ⅰ卷(选择题 共60分)‎ 一、选择题 ‎1.实数集,设集合,,则P()=‎ ‎.            .(1,3) . (2,3]            . (-,-2] [1,+ )‎ ‎2.指数函数y=b在[b,2]上的最大值与最小值的和为6.则值为 ‎.2 . -3 .2或-3 .‎ ‎3.“函数f(x)=a+lnx(x≥e)存在零点”是“a<-1”的(  ) . 充分不必要条件          . 必要不充分条件 . 充要条件             . 既不充分不用必要条件 4.在△ABC中,已知a,b,c分别是角A,B,C的对边, cosA=,c=2,△ABC的面积S=6,则a的值为(  ) .  2  .4    . 6  . 72 5.已知函数f(x)=-(||<)的图象关于y轴对称,则f(x)在区间 [-,]上的最大值为(  )‎ ‎. 1      .    .    . 2 6若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M – m ‎.与a有关,且与b有关 .与a有关,但与b无关 ‎.与a无关,且与b无关 .与a无关,但与b有关 ‎7.已知,是单位向量,,的夹角为90°,若向量满足:|--|=2,则||的最大值为(  ) ‎ ‎.2-    .     . 2      .2+‎ ‎8.若O是ABC所在平面内一点,且满足|-|=|+-2|,则ABC一定是 ‎.等边三角形 .等腰三角形 .直角三角形 . 等腰直角三角形 ‎9.函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则f(5)=(  ) . -1      . 0      . 1      . 5 10.设实数x,y满足则max{2x+3y-1,x+2y+2}的取值范围是 ‎.[2,9] .[-1,9] .[-1,8] .[2,8]‎ ‎11.已知数列{}满足:+=(n+1)cos(n2,nN*),是数列{}的前n项和,若 ‎+m=1010,m>0,则的最小值为(  )‎ ‎.2 . .2 .2+‎ 12. 定义R上的减函数f(x),其导函数f/(x)满足:<,‎ 则下列结论正确的是 . 当且仅当x(-,1),f(x)<0 ‎ ‎ . 当且仅当x∈(1,+∞),f(x)>0‎ ‎. 对于∀x∈R,f(x)<0       ‎ ‎. 对于x∈R,f(x)>0 ‎ 第Ⅱ卷(非选择题 共90分)‎ 二、填空题(本大题共4小题,共20.0分)‎ ‎13.计算:=____‎ ‎14.已知是偶函数,是奇函数,它们的 定义域均为[﹣3,3],且它们在x∈[0,3]上的图象 如图所示,则不等式<0的解集是_____‎ ‎15.方程: =1的实数解的个数为_____个 ‎16.有下列命题: ‎ ‎①在函数 的图象中,相邻两个对称中心的距离为π; ‎ ‎②函数y=的图象关于点(-1,1)对称;‎ ‎③“且”是“”的必要不充分条件; ④已知命题:对任意的∈,都有,则¬是:存在∈,使得 ⑤在△中,若,则角等于或.‎ 其中所有真命题的个数是 ______ .‎ 三、解答题 ‎17.(本小题10分)已知=(2sinx,1),=(2cos(x-),),设函数-2‎ ‎(Ⅰ)求的最小正周期、零点;‎ ‎(Ⅱ)求在区间[,]上的最大值和最小值.‎ ‎18.(本小题12分)已知命题:集合,‎ 且;‎ 命题:集合,且=‎ ‎(1)求命题、都为真命题时的实数的取值范围; (2)当实数取何范围时,命题、中有且仅有一个为真命题. ‎ ‎19.(本小题12分)在中,角、、所对的边分别是、、,已知 ‎,且.‎ ‎(Ⅰ)当=2,=时,求、的值;‎ ‎(Ⅱ)若角为锐角,求的取值范围. ‎ ‎20.(本小题12分)(1)已知函数(、,为自然对数的底数)在点(1,f(1))处的切线方程为:.求、的值;‎ ‎(2)已知正实数、满足:+=13,求证:2+313.‎ ‎21.(本小题12分)已知数列{}满足:…+=,(nN*)‎ ‎(Ⅰ)求数列{an}的通项公式;‎ ‎(Ⅱ)设=,数列{}的前n项和为,试比较与的大小 ‎22.(本小题12分)已知函数++‎ ‎(Ⅰ)求函数的单调区间;‎ ‎(Ⅱ)令,若,正实数,满足:,‎ 求证:. ‎ 答案 ‎ 蚌埠二中2017-2018学年度高三第一学期期中考试 ‎ 数学答案(理科)‎ DABCA BDCBA AD ‎ ‎13.14.(-2,-1)(0,1)(2,3) 15.3 16.1 ‎ ‎ ‎ ‎17.(Ⅰ)T==π, 零点是 ‎(Ⅱ)时,函数f(x)的最小值为; 时,函数f(x)的最大值为2. ‎ ‎18.①[-4,-2)(-2,3] ②{-2}(3,4) ‎ ‎19.(1). ‎ ‎(2). . 20.(1)a=,b=e.(2) ‎ ‎21.(I)解:数列{an}满足,(n∈N+). ∴n≥2时,a1+3a2+…+3n-2an-1=,相减可得:3n-1an=,∴an=. n=1时,a1=. 综上可得:an=. (II)证明:, ∴b1==. n≥2时,bn==. ∴Sn=+++…+ =+<. ‎ ‎22.(1): 递增区间为 (0,+),无递减区间;‎ ‎ a>1: 递减区间(0,),递增区间(,+)‎ ‎ a<0: 递增区间(0,), 递减区间(,+)‎ ‎(2),x>0. 由g(x1)+g(x2)+x1x2=0,即, 从而(x1+x2)2+(x1+x2)-11=x1x2-ln(x1x2),…(8分) 令t=x1x2,则由ϕ(t)=t-lnt得:, 可知,ϕ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增. ∴ϕ(t)≥ϕ(1)=1,…(10分) ∴(x1+x2)2+(x1+x2)-11≥1,∴(x1+x2+4)(x1+x2-3)≥0又∵x1>0,x2>0,∴x1+x2≥3. ‎