- 703.39 KB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.1 数的概念的扩展
1.2 复数的有关概念
明目标、知重点
1.了解引入虚数单位i的必要性,了解数集的扩充过程.
2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.
3.掌握复数代数形式的表示方法,理解复数相等的充要条件.
4.理解复数的几何表示.
1.复数的有关概念
(1)复数
①定义:形如a+bi的数叫作复数,其中a,b∈R,i叫作虚数单位.a叫作复数的实部,b叫作复数的虚部.
②表示方法:复数通常用字母z表示,即z=a+bi (a,b∈R).
(2)复数集
①定义:复数的全体组叫作复数集.
②表示:通常用大写字母C表示.
2.复数的分类及包含关系
(1)复数(a+bi,a,b∈R)
(2)集合表示:
3.两个复数相等
a+bi=c+di当且仅当a=c且b=d.
4.复数的几何意义
(1)复数z=a+bi(a,b∈R) 复平面内的点Z(a,b);
(2)复数z=a+bi(a,b∈R) 平面向量=(a,b).
5.复数的模
复数z=a+bi(a,b∈R)对应的向量为,则的模叫作复数z的模或绝对值,记作|z|,且|z|=.
[情境导学]
为解决方程x2=2,数系从有理数扩充到实数;数的概念扩充到实数集后,人们发现在实数范围内很多问题还不能解决,如从解方程的角度看,例如x2=-1这个方程在实数范围内就无解,那么怎样解决方程x2=-1在实数系中无根的问题呢?我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?本节我们就来研究这个问题.
探究点一 复数的概念
思考1 为解决方程x2=2,数系从有理数扩充到实数;那么怎样解决方程x2+1=0在实数系中无根的问题呢?
答 设想引入新数i,使i是方程x2+1=0的根,即i·i=-1,方程x2+1=0有解,同时得到一些新数.
思考2 如何理解虚数单位i?
答 (1)i2=-1.
(2)i与实数之间可以运算,亦适合加、减、乘的运算律.
(3)由于i2<0与实数集中a2≥0(a∈R)矛盾,所以实数集中很多结论在复数集中不再成立.
(4)若i2=-1,那么i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i.
思考3 什么叫复数?怎样表示一个复数?什么叫虚数?什么叫纯虚数?
答 形如a+bi(a,b∈R)的数叫作复数,复数通常用字母z表示,即z=a+bi,这一表示形式叫作复数的代数形式,其中a、b分别叫作复数z的实部与虚部.
对于复数z=a+bi(a,b∈R),当b≠0时叫作虚数;当a=0且b≠0时,叫作纯虚数.
例1 请说出下列复数的实部和虚部,并判断它们是实数,虚数还是纯虚数.
①2+3i;②-3+i;③+i;④π;⑤-i;⑥0.
解 ①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为,是虚数;③的实部为,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-,是纯虚数;⑥的实部为0,虚部为0,是实数.
反思与感悟 复数a+bi中,实数a和b分别叫作复数的实部和虚部.特别注意,b为复数的虚部而不是虚部的系数,b连同它的符号叫作复数的虚部.
跟踪训练1 符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.
(1)实部为-的虚数;
(2)虚部为-的虚数;
(3)虚部为-的纯虚数;
(4)实部为-的纯虚数.
解 (1)存在且有无数个,如-+i等;(2)存在且不唯一,如1-i等;(3)存在且唯一,即-i;(4)不存在,因为纯虚数的实部为0.
例2 求当实数m为何值时,z=+(m2+5m+6)i分别是:(1)实数;(2)虚数;(3)纯虚数.
解 由已知得复数z的实部为,虚部为m2+5m+6.
(1)复数z是实数的充要条件是
⇔
⇔m=-2.
∴当m=-2时复数z是实数.
(2)复数z是虚数的充要条件是
⇔m≠-3且m≠-2.
∴当m≠-3且m≠-2时复数z是虚数.
(3)复数z是纯虚数的充要条件是
⇔⇔m=3.
∴当m=3时复数z是纯虚数.
反思与感悟 利用复数的概念对复数分类时,主要依据实部、虚部满足的条件,可列方程或不等式求参数.
跟踪训练2 实数m为何值时,复数z=+(m2+2m-3)i是(1)实数;(2)虚数;(3)纯虚数.
解 (1)要使z是实数,m需满足m2+2m-3=0,且有意义即m-1≠0,解得m=-3.
(2)要使z是虚数,m需满足m2+2m-3≠0,且有意义即m-1≠0,解得m≠1且m≠-3.
(3)要使z是纯虚数,m需满足=0,m-1≠0,
且m2+2m-3≠0,
解得m=0或m=-2.
探究点二 两个复数相等
思考1 两个复数能否比较大小?
答 如果两个复数不全是实数,那么它们不能比较大小.
思考2 两个复数相等的充要条件是什么?
答 复数a+bi与c+di相等的充要条件是a=c且b=d(a,b,c,d∈R).
例3 已知x,y均是实数,且满足(2x-1)+i=-y-(3-y)i,求x与y.
解 由复数相等的充要条件得
解得
反思与感悟 两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.
跟踪训练3 已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.
解 ∵M∪P=P,∴M⊆P,
∴(m2-2m)+(m2+m-2)i=-1或(m2-2m)+(m2+m-2)i=4i.
由(m2-2m)+(m2+m-2)i=-1得
解得m=1;
由(m2-2m)+(m2+m-2)i=4i得
解得m=2.
综上可知m=1或m=2.
探究点三 复数的几何意义
思考1 实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?
答 任何一个复数z=a+bi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集可以建立一一对应关系.
小结 建立了直角坐标系来表示复数的平面叫作复平面,x轴叫作实轴,y轴叫作虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
思考2 下列命题是否正确?
①在复平面内,对应于实数的点都在实轴上;
②在复平面内,对应于纯虚数的点都在虚轴上;
③在复平面内,实轴上的点所对应的复数都是实数;
④在复平面内,虚轴上的点所对应的复数都是纯虚数;
答 根据实轴的定义,x轴叫实轴,实轴上的点都表示实数,反过来,实数对应的点都在实轴上,如实轴上的点(2,0)表示实数2,因此①③是真命题;根据虚轴的定义,y轴叫虚轴,显然所有纯虚数对应的点都在虚轴上,如纯虚数5i对应点(0,5),但虚轴上的点却不都是纯虚数,这是因为原点对应的有序实数对为(0,0),它所确定的复数是z=0+0i=0表示的是实数,故除了原点外,虚轴上的点都表示纯虚数,所以②是真命题,④是假命题.
思考3 复数与复平面内的向量怎样建立对应关系?
答 当向量的起点在原点时,该向量可由终点唯一确定,从而可与该终点对应的复数建立一一对应关系.
思考4 怎样定义复数z的模?它有什么意义?
答 复数z=a+bi(a,b∈R)的模就是向量=(a,b)的模,记作|z|或|a+bi|.
|z|=|a+bi|=可以表示点Z(a,b)到原点的距离.
例4 在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应点(1)在虚轴上;(2)在第二象限;(3)在直线y=x上,分别求实数m的取值范围.
解 复数z=(m2-m-2)+(m2-3m+2)i的实部为m2-m-2,虚部为m2-3m+2.
(1)由题意得m2-m-2=0.
解得m=2或m=-1.
(2)由题意得,
∴,∴-1b,则a+i>b+i
C.若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1
D.两个虚数不能比较大小
答案 D
解析 对于复数a+bi(a,b∈R),
当a=0且b≠0时为纯虚数.
在A中,若a=-1,则(a+1)i不是纯虚数,故A错误;
在B中,两个虚数不能比较大小,故B错误;
在C中,若x=-1,不成立,故C错误;D正确.
3.以-+2i的虚部为实部,以i+2i2的实部为虚部的新复数是( )
A.2-2i B.-+i
C.2+i D.+i
答案 A
解析 设所求新复数z=a+bi(a,b∈R),
由题意知:复数-+2i的虚部为2;复数i+2i2=i+2×(-1)=-2+i的实部为-2,则所求的z=2-2i.故选A.
4.若(x+y)i=x-1(x,y∈R),则2x+y的值为( )
A. B.2
C.0 D.1
答案 D
解析 由复数相等的充要条件知,
解得∴x+y=0.∴2x+y=20=1.
5.设m∈R,m2+m-2+(m2-1)i是纯虚数,其中i是虚数单位,则m=________.
答案 -2
解析 ⇒m=-2.
6.已知(2x-y+1)+(y-2)i=0,求实数x,y的值.
解 ∵(2x-y+1)+(y-2)i=0,
∴解得
所以实数x,y的值分别为,2.
二、能力提升
7.若(x2-1)+(x2+3x+2)i是纯虚数,则实数x的值是( )
A.1 B.-1
C.±1 D.-1或-2
答案 A
解析 由题意,得解得x=1.
8.z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=________,n=________.
答案 2 ±2
解析 由z1=z2得,解得.
9.已知集合M={1,2,(a2-3a-1)+(a2-5a-6)i},N={-1,3},若M∩N={3},则实数a=________.
答案 -1
解析 由M∩N={3}知,3∈M,即有(a2-3a-1)+(a2-5a-6)i=3,所以
解得a=-1.
10.实数m分别为何值时,复数z=+(m2-3m-18)i是(1)实数;(2)虚数;(3)纯虚数.
解 (1)要使所给复数为实数,必使复数的虚部为0.
故若使z为实数,则,
解得m=6.所以当m=6时,z为实数.
(2)要使所给复数为虚数,必使复数的虚部不为0.
故若使z为虚数,则m2-3m-18≠0,且m+3≠0,
所以当m≠6且m≠-3时,z为虚数.
(3)要使所给复数为纯虚数,必使复数的实部为0,虚部不为0.
故若使z为纯虚数,则,
解得m=-或m=1.
所以当m=-或m=1时,z为纯虚数.
11.若m为实数,z1=(m2+1)+(m3+3m2+2m)i,z2=(4m+2)+(m3-5m2+4m)i,那么使z1>z2的m值的集合是什么?使z1z2时,m值的集合为空集;当z1