- 1005.50 KB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【2017湖北黄冈3月质检】若集合,且,则集合可能是( )
A. B. C. D.
【答案】D
【解析】由题意得 ,因为 ,所以选B.
【2017湖北黄冈3月质检】下列四个结论:
①若,则恒成立;
②命题“若,则”的逆否命题为“若,则”;
③“命题为真”是“命题为真”的充分不必要条件;
④命题“”的否定是“”.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【点睛】本题考查逻辑联结词与命题、特称命题与全称命题,属中档题;全称命题的否定与特称命题的否定是高考考查的重点,对特称命题的否定,将存在换成任意,后边变为其否定形式,注意全称命题与特称命题否定的书写,是常规题,很好考查了学生对双基的掌握程度.
【2017内蒙呼和浩特一模】“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.成分必要条件 D.既不充分也不必要条件
【答案】A
【解析】试题分析:因为,所以“”是“”的充分不必要条件;故选B.
【2017内蒙呼和浩特一模】已知集合,集合,则
( )
A. B. C.0 D.
【答案】A
【解析】 ,选A.
【2017山东日照一模】“”是“”的
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】A
【2017山东日照一模】已知集合,则M∩N为
A. B. C. D.
【答案】C
【解析】,故.
【点晴】集合的表示方法常用的有列举法、描述法.研究一个集合,我们首先要看清楚它的代表元是实数、还是点的坐标还是其它的一些元素,这是很关键的一步.第二步尤其要注意集合中其它的限制条件如集合,经常被忽视,另外在求交集时注意区间端点的取舍. 并通过画数轴来解交集不易出错.
【2017甘肃兰州一诊】下列命题中,真命题为( )
A. ,
B. ,
C. 已知为实数,则的充要条件是
D. 已知为实数,则,是的充分不必要条件
【答案】D
【解析】A. ,,故A不正确;
B.当,时 ,故B不正确;
C.充分性:当时,可能 ,此时不成立,所以充分性不成立,故C不正确;
D.当,时,成立,所以充分性成立;当时,可能为复数,故必要性不成立.正确,故选D.
【2017陕西咸阳二模】命题:,则命题为( )
A. B.
C. D.
【答案】C
【解析】命题为:,选C.
【点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“”是真命题,需要对集合中的每个元素,证明成立;要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个,使成立即可,否则就是假命题.
【2017福建泉州3月质检】已知直线,平面,则是的 ( )
A.充分但不必要条件 B.必要但不充分条件
C. 充分必要条件 D.既不充分也不必要条件
【答案】B
【2017山东淄博3月模拟】下列命题为真命题的是( ).
A. 若,则
B. “”是“函数为偶函数”的充要条件
C. ,使成立
D. 已知两个平面,若两条异面直线满足且,则
【答案】D
【解析】对于A:令,,则不成立,故排除A;
对于B:“”是“函数为偶函数”的充分不必要条件,故排除B;
对于C:根据幂函数,当时,函数单调递减,故不存在,使成立,故排除C;
对于D:已知两个平面,若两条异面直线满足且,
可过作一个平面与平面相交于,由线面平行的性质定理可得,再由线面平行的判断定理可得,,由面面平行的判断定理可得,所以D正确;故选D.学科*网
【2017山东淄博3月模拟】已知集合,,则( )
A. B. C. D.
【答案】C
【解析】由,得,,得,故选C.
【2017广东汕头一模】命题“恒成立”是假命题,则实数的取值范围是( ).
A. B. 或 C. 或 D. 或
【答案】B
【2017广东汕头一模】已知集合,,则=( ).
A. {1,2} B. {0, 1,2} C. {1} D. {1,2,3}
【答案】A
【解析】,∴,故选A..
【2017福建莆田质检】设为实数,直线,则“”是的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】 ,但不能推出。故是充分不必要条件。故选A。
【2017福建莆田质检】已知集合则 ( )
A. B. C. D.
【答案】C
【解析】 。故选C。
【点睛】1、用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素元素的限制条件,明确集合的类型,是数集,是点集还是其它集合。2、求集合的交、交、补时,一般先化简,再由交、并、补的定义求解。3、在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍。
【2017河北唐山一模】已知集合,,则()
A. B. C. D.
【答案】C
【解析】 。故选C。
【点睛】1、用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素元素的限制条件,明确集合的类型,是数集,是点集还是其它集合。2、求集合的交、交、补时,一般先化简,再由交、并、补的定义求解。3、在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍。
【2017北京海淀区零模】设全集,,则( )
A. B. C. D.
【答案】A
【2017辽宁大连双基测试】已知集合,,则( )
A. B. C. D.
【答案】D
【解析】因,故,应选答案D。学科#网
【2017哈师大附中、东北师大附中、辽宁实验联考】已知集合,,则( )
A. B. C. D.
【答案】A
【解析】因,,故,应选答案A。
【2017重庆一调】已知集合,若,则( )
A. 0或1 B. 0或2 C. 1或2 D. 0或1或2
【答案】C
【解析】 或。故选C。
【点睛】1、用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素元素的限制条件,明确集合的类型,是数集,是点集还是其它集合。2、求集合的交、交、补时,一般先化简,再由交、并、补的定义求解。3、在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍。
【2017重庆一调】设命题,则为( )
A. B. C. D.
【答案】B
【解析】命题是全称命题,苦否定是特称命题: 。故选B。