- 56.00 KB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(四十) 直接证明和间接证明
一、选择题
1.(2014·山东高考)用反证法证明命题“设a,b 为实数,则方程x3+ax+b=0 至少有一个实根”时,要做的假设是( )
A.方程x3+ax+b=0没有实根
B.方程 x3+ax+b=0至多有一个实根
C.方程x3+ax+b=0 至多有两个实根
D.方程x3+ax+b=0 恰好有两个实根
2.分析法又称执果索因法,若用分析法证明“设a>b>c,且a+b+c=0,求证:0 B.a-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
3.不相等的三个正数a,b,c成等差数列,并且x是a,b的等比中项,y是b,c的等比中项,则x2,b2,y2三数( )
A.成等比数列而非等差数列
B.成等差数列而非等比数列
C.既成等差数列又成等比数列
D.既非等差数列又非等比数列
4.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值( )
A.恒为负值 B.恒等于零
C.恒为正值 D.无法确定正负
5.设a,b是两个实数,给出下列条件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;
⑤ab>1.
其中能推出:“a,b中至少有一个大于1”的条件是( )
A.②③ B.①②③
C.③ D.③④⑤
6.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则( )
A.△A1B1C1和△A2B2C2都是锐角三角形
B.△A1B1C1和△A2B2C2都是钝角三角形
C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形
D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形
二、填空题
7.用反证法证明命题“a,b∈R,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是______________________________.
8.设a>b>0,m=-,n=,则m,n的大小关系是________.
9.已知点An(n,an)为函数y=图像上的点,Bn(n,bn)为函数y=x图像上的点,其中n∈N*,设cn=an-bn,则cn与cn+1的大小关系为________.
10.若二次函数f(x)=4x2-2(p-2)x-2p2-p+1,在区间内至少存在一点c,使f(c)>0,则实数p的取值范围是________.
三、解答题
11.若a>b>c>d>0且a+d=b+c,
求证:+<+.
12.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且00.
(1)证明:是f(x)=0的一个根;
(2)试比较与c的大小;
(3)证明:-20
⇔(a-c)(2a+c)>0⇔(a-c)(a-b)>0.
故选C.
3.选B 由已知条件,可得
由②③得代入①,得+=2b,
即x2+y2=2b2.故x2,b2,y2成等差数列.
4.选A 由f(x)是定义在R上的奇函数,
且当x≥0时,f(x)单调递减,
可知f(x)是R上的单调递减函数,
由x1+x2>0,可知x1>-x2,f(x1)1,
但a<1,b<1,故①推不出;
若a=b=1,则a+b=2,故②推不出;
若a=-2,b=-3,则a2+b2>2,故④推不出;
若a=-2,b=-3,则ab>1,故⑤推不出;
对于③,即a+b>2,则a,b中至少有一个大于1,
反证法:假设a≤1且b≤1,
则a+b≤2与a+b>2矛盾,
因此假设不成立,a,b中至少有一个大于1.
6.选D 由条件知,△A1B1C1的三个内角的余弦值均大于0,则△A1B1C1是锐角三角形,假设△A2B2C2是锐角三角形.
由得
那么,A2+B2+C2=,这与三角形内角和为180°相矛盾.
所以假设不成立,又显然△A2B2C2不是直角三角形.
所以△A2B2C2是钝角三角形.
7.解析:“至少有n个”的否定是“最多有n-1个”,故应假设a,b中没有一个能被5整除.
答案:a,b中没有一个能被5整除
8.解析:法一:(取特殊值法)取a=2,b=1,得m⇐a0,显然成立.
答案:m0,
由00,
知f>0与f=0矛盾,
∴≥c,又∵≠c,
∴>c.
(3)证明:由f(c)=0,得ac+b+1=0,
∴b=-1-ac.
又a>0,c>0,∴b<-1.
二次函数f(x)的图像的对称轴方程为
x=-=<=x2=,
即-<.
又a>0,
∴b>-2,
∴-2