- 48.50 KB
- 2021-06-22 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【课时训练】正弦定理、余弦定理
一、选择题
1.(2018河北保定模拟)在△ABC中,已知a,b,c分别为∠A,∠B,∠C所对的边,且a=4,b=4,∠A=30°,则∠B等于( )
A.30° B.30°或150°
C.60° D.60°或120°
【答案】D
【解析】sin B===,又因为b>a,所以∠B有两个解,所以∠B=60°或120°.故选D.
2.(2018西安模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,且sin2B=sin2C,则△ABC的形状为( )
A.等腰三角形 B.锐角三角形
C.直角三角形 D.等腰直角三角形
【答案】D
【解析】由bcos C+ccos B=asin A,
得sin Bcos C+sin Ccos B=sin2A,
∴sin(B+C)=sin2A,即sin A=sin2A.在三角形中,sin A≠0,
∴sin A=1.∴A=90°,
由sin2B=sin2C,知b=c,
综上可知△ABC为等腰直角三角形.
3.(2018重庆巴蜀中学期中)在△ABC中,已知b=40,c=20,C=60°,则此三角形的解的情况是( )
A.有一解 B.有两解
C.无解 D.有解但解的个数不确定
【答案】C
【解析】由正弦定理,得=,∴sin B===>1.
∴角B不存在,即满足条件的三角形不存在.
4.(2018安徽安庆二模)设角A,B,C是△ABC的三个内角,则“A+B<C”是“△ABC是钝角三角形”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【解析】由A+B+C=π,A+B<C,可得C>,故三角形ABC为钝角三角形,反之不成立.
5.(2018河北衡水调研)在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B
=45°,cos A=,则b=( )
A. B.
C. D.
【答案】C
【解析】因为cos A=,所以sin A===,所以sin C=sin[180°-(A+B)]=sin(A+B)=sin Acos B+cos Asin B=cos 45°+sin 45°=.由正弦定理=,得b=×sin 45°=.故选C.
二、填空题
6.(2018辽宁五校联考)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C=________.
【答案】
【解析】因为3sin A=5sin B,所以由正弦定理可得3a=5b.
因为b+c=2a,所以c=2a-a=a.
令a=5,b=3,c=7,
则由余弦定理c2=a2+b2-2abcos C,
得49=25+9-2×3×5cos C,
解得cos C=-,所以C=.
7.(2018济南模拟)在△ABC中,a=3,b=2,cos C=,则△ABC的面积为________.
【答案】4
【解析】∵cos C=,00,∴sin A=cos A,
即tan A=.
∵0