- 550.50 KB
- 2021-06-22 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
北仑中学2019学年第一学期高二年级期中考试数学试卷(2-10班)
一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
A. B. C. D. 或
2.若将圆锥的高扩大到原来的2倍,底面半径缩短到原来的,则圆锥的体积 ( )
A.扩大到原来的2倍 B.缩小到原来的一半 C.不变 D.缩小到原来的
3.“”是“方程为椭圆”的 ( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
4.设,是两条不同的直线,是一个平面,则下列命题正确的是 ( )
A.若,,则 B.若,,则
C.若,,则 D.若,,则
5.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是 ( )
A.BD∥平面CB1D1 B.AC1⊥BD
C.AC1⊥平面CB1D1 D.异面直线AD与CB1所成的角为60°
6.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是 ( )
A.2+ B. C. D.1+
7.若椭圆的焦点为,点为椭圆上一点,且,则的面积为 ( )
A.9 B.12 C.15 D.18
8.若,使成立的一个充分不必要条件是 ( )
A. B. C.且 D.
9.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马。如图,已知四棱锥为阳马,且,底面。若是线段上的点(含端点),设与所成的角为,与底面
所成的角为,二面角的平面角为,则( )
A. B. C. D.
10.在棱长为1的正方体中,分别为
棱,的中点,为线段的中点,若点
分别为线段上的动点,则的最小值为( )
A. B. C. D.
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11. 命题“若整数都是偶数,则是偶数”的否命题可表示为 。
这个否命题是一个 命题。(填“真”或“假”)
12. 已知椭圆中心在原点,一个焦点为,且长轴长是短轴长的倍,则该
椭圆的长轴长为 ,其标准方程是 。
13.从一个棱长为1的正方体中切去一部分,得到一个几何体,其三视图如下图,则该
几何体的体积为 ;其外接球的表面积为 。
14.在二面角中,,且,若,
,二面角的余弦值为,则 ;直线与平面
所成角正弦值为 。
15. 若曲线与直线有两个不同的交点时,则实数的
取值范围是 。
16设命题函数f(x)=lg的定义域为R;命题q:不等式<1+ax对
一切正实数均成立.如果命题和命题有且只有一个为真命题,则实数a的取值范围
为 。
17.如图,在正方形中,分别为线段上的点,,,将绕直线、绕直线各自独立旋转一周,则在所有
D
C
E
A
F
B
(第17题)
旋转过程中,直线与直线所成角的最大值为 。
三、解答题:本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤。
18.设命题实数满足,命题实数满足。
(Ⅰ)若,若同为真命题,求实数的取值范围
(Ⅱ)若,且是的充分不必要条件,求实数的取值范围。
19.在如图所示的几何体中,四边形为矩形,平面平面,//,,,,点在棱上.
(Ⅰ)若为的中点,求证://平面;
(Ⅱ)若二面角的余弦值为,求的长度.
20.中,,两边上的中线的和为,
(Ⅰ)试建立适当的坐标系,求重心的轨迹的方程;
(Ⅱ)已知为轨迹上动点,若过点作的外角平分线的垂线,垂足为,求点的轨迹方程。
21.如图,斜三棱柱的侧棱长为,底面是边长为1的正三角形,.
A1
C1
A
B
C
B1
(Ⅰ)求异面直线与所成的角;
(Ⅱ)求此棱柱的表面积和体积.
22.如图,在直三棱柱中,,,点是
的中点.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的余弦值.
北仑中学2018学年第二学期高一年级期中考试数学答案(2-10班)
1-10:DBBAA ADBAB
11.若整数a,b不都是偶数,则a+b不是偶数 假
12.8 x^2/16+y^2/4=1
13.5/6 3π
14.
15.6
16.[1,2
17.70°
18.(1)x∈(2,3) (2)a∈(0,4/3]
19.(1)x^2/4+y^2/3=1,x≠±2 (2)x^2+y^2=4,x≠±2
20.(1)90° (2)S= V=
21.(1)证略 (2)
22. (1)证略 (2)