• 696.00 KB
  • 2021-06-23 发布

2014年高考数学(理科)真题分类汇编D单元 数列

  • 19页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ 数 学 D单元 数列 ‎ D1 数列的概念与简单表示法 ‎17.D1、D4、D5[2014·江西卷] 已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.‎ ‎(1)令cn=,求数列{cn}的通项公式;‎ ‎(2)若bn=3n-1,求数列{an}的前n项和Sn.‎ ‎17.解:(1)因为anbn+1-an+1bn+2bn+1bn=0,bn≠0(n∈N*),所以-=2,即cn+1-cn=2,‎ 所以数列{cn}是以c1=1为首项,d=2为公差的等差数列,故cn=2n-1.‎ ‎(2)由bn=3n-1,知an=(2n-1)3n-1,于是数列{an}的前n项和Sn=1×30+3×31+5×32+…+(2n-1)×3n-1,3Sn=1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3n,将两式相减得-2Sn=1+2×(31+32+…+3n-1)-(2n-1)×3n=-2-(2n-2)×3n,‎ 所以Sn=(n-1)3n+1.‎ ‎17.D1、D2[2014·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.‎ ‎(1)证明:an+2-an=λ.‎ ‎(2)是否存在λ,使得{an}为等差数列?并说明理由.‎ ‎17.解:(1)证明:由题设,anan+1=λSn-1,an+1an+2=λSn+1-1,‎ 两式相减得an+1(an+2-an)=λan+1.‎ 因为an+1≠0,所以an+2-an=λ.‎ ‎(2)由题设,a1=1,a‎1a2=λS1-1,可得 a2=λ-1,‎ 由(1)知,a3=λ+1.‎ 若{an}为等差数列,则‎2a2=a1+a3,解得λ=4,故an+2-an=4.‎ 由此可得{a2n-1}是首项为1,公差为4的等差数列,‎ a2n-1=4n-3;‎ ‎{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.‎ 所以an=2n-1,an+1-an=2.‎ 因此存在λ=4,使得数列{an}为等差数列.‎ ‎17.D1、D3、D5[2014·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an+1=3an+1.‎ ‎(1)证明是等比数列,并求{an}的通项公式;‎ ‎(2)证明++…+<.‎ ‎17.解:(1)由an+1=3an+1得an+1+=3.‎ 又a1+=,所以是首项为,公比为3的等比数列,所以an+=,因此数列{an}的通项公式为an=.‎ ‎(2)证明:由(1)知=.‎ 因为当n≥1时,3n-1≥2×3n-1,‎ 所以≤,即=≤.‎ 于是++…+≤1++…+=<.‎ 所以++…+<.‎ ‎22.D1,D2,M3[2014·重庆卷] 设a1=1,an+1=+b(n∈N*).‎ ‎(1)若b=1,求a2,a3及数列{an}的通项公式.‎ ‎(2)若b=-1,问:是否存在实数c使得a2nf(a2k+1)>f(1)=a2,即 ‎1>c>a2k+2>a2.‎ 再由f(x)在(-∞,1]上为减函数,得c=f(c)f(a2k+1)=a2k+2,‎ a2(k+1)=f(a2k+1)f(a2n+1),即a2n+1>a2n+2.‎ 所以a2n+1>-1,解得a2n+1>. ④‎ 综上,由②③④知存在c=使a2n0,a7+a10<0,则当n=________时,{an}的前n项和最大.‎ ‎12.8 [解析] ∵a7+a8+a9=‎3a8>0,a7+a10=a8+a9<0,∴a8>0,a9<0,∴n=8时,数列{an}的前n项和最大.‎ ‎3.D2[2014·福建卷] 等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于(  )‎ A.8 B.‎10 C.12 D.14‎ ‎3.C [解析] 设等差数列{an}的公差为d,由等差数列的前n项和公式,得S3=3×2+d=12,解得d=2,‎ 则a6=a1+(6-1)d=2+5×2=12.‎ ‎18.D2、D3、D5[2014·湖北卷] 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.‎ ‎(1)求数列{an}的通项公式.‎ ‎(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.‎ ‎18.解:(1)设数列{an}的公差为d,‎ 依题意得,2,2+d,2+4d成等比数列,‎ 故有(2+d)2=2(2+4d),‎ 化简得d2-4d=0,解得d=0或d=4.‎ 当d=0时,an=2;‎ 当d=4时,an=2+(n-1)·4=4n-2.‎ 从而得数列{an}的通项公式为an=2或an=4n-2.‎ ‎(2)当an=2时,Sn=2n,显然2n<60n+800,‎ 此时不存在正整数n,使得Sn>60n+800成立.‎ 当an=4n-2时,Sn==2n2.‎ 令2n2>60n+800,即n2-30n-400>0,‎ 解得n>40或n<-10(舍去),‎ 此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.‎ 综上,当an=2时,不存在满足题意的正整数n;‎ 当an=4n-2时,存在满足题意的正整数n,其最小值为41.‎ ‎20.D2、D5[2014·湖南卷] 已知数列{an}满足a1=1,|an+1-an|=pn,n∈N*.‎ ‎(1)若{an}是递增数列,且a1,‎2a2,‎3a3成等差数列,求p的值;‎ ‎(2)若p=,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.‎ ‎20.解:(1)因为{an}是递增数列,所以an+1-an=|an+1-an|=pn.而a1=1,因此.又a1,‎2a2,‎3a3成等差数列,所以‎4a2=a1+‎3a3,因而3p2-p=0,解得p=或p=0.‎ 当p=0时,an+1=an,这与{an}是递增数列矛盾,故p=.‎ ‎(2)由于{a2n-1}是递增数列,因而a2n+1-a2n-1>0,于是(a2n+1-a2n)+(a2n-a2n-1)>0.①‎ 因为<,所以|a2n+1-a2n|<|a2n-a2n-1|.②‎ 由①②知,a2n-a2n-1>0,因此a2n-a2n-1==.③‎ 因为{a2n}是递减数列,同理可得,a2n+1-a2n<0,故a2n+1-a2n=-=.④‎ 由③④可知,an+1-an=.‎ 于是an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+-+…+=1+·=+·.‎ 故数列{an}的通项公式为an=+·.‎ ‎8.D2[2014·辽宁卷] 设等差数列{an}的公差为d.若数列{‎2a1an}为递减数列,则(  )‎ A.d<0 B.d>‎0 C.a1d<0 D.a1d>0‎ ‎8.C [解析] 令bn=‎2a1an,因为数列{‎2a1an}为递减数列,所以==‎2a1(an+1-an)=‎2a1d<1,所得a1d<0.‎ ‎18.D2、D4[2014·全国卷] 等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.‎ ‎(1)求{an}的通项公式;‎ ‎(2)设bn=,求数列{bn}的前n项和Tn.‎ ‎18.解:(1)由a1=10,a2为整数知,等差数列{an}的公差d为整数.‎ 又Sn≤S4,故a4≥0,a5≤0,‎ 于是10+3d≥0,10+4d≤0,‎ 解得-≤d≤-,‎ 因此d=-3.‎ 故数列{an}的通项公式为an=13-3n.‎ ‎(2)bn==.于是Tn=b1+b2+…+bn=++…+==.‎ ‎17.D1、D2[2014·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.‎ ‎(1)证明:an+2-an=λ.‎ ‎(2)是否存在λ,使得{an}为等差数列?并说明理由.‎ ‎17.解:(1)证明:由题设,anan+1=λSn-1,an+1an+2=λSn+1-1,‎ 两式相减得an+1(an+2-an)=λan+1.‎ 因为an+1≠0,所以an+2-an=λ.‎ ‎(2)由题设,a1=1,a‎1a2=λS1-1,可得 a2=λ-1,‎ 由(1)知,a3=λ+1.‎ 若{an}为等差数列,则‎2a2=a1+a3,解得λ=4,故an+2-an=4.‎ 由此可得{a2n-1}是首项为1,公差为4的等差数列,‎ a2n-1=4n-3;‎ ‎{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.‎ 所以an=2n-1,an+1-an=2.‎ 因此存在λ=4,使得数列{an}为等差数列.‎ ‎19.D2,D3,D4[2014·山东卷] 已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)令bn=(-1)n-1,求数列{bn}的前n项和Tn.‎ ‎19.解: (1)因为S1=a1,S2=‎2a1+×2=‎2a1+2,‎ S4=‎4a1+×2=‎4a1+12,‎ 由题意得(‎2a1+2)2=a1(‎4a1+12),解得a1=1,‎ 所以an=2n-1.‎ ‎(2)由题意可知,‎ bn=(-1)n-1 ‎=(-1)n-1 ‎=(-1)n-1.‎ 当n为偶数时,‎ Tn=-+…+- ‎=1- ‎=.‎ 当n为奇数时,‎ Tn=-+…-+ ‎=1+ ‎=.‎ 所以Tn= ‎16.D2,D3,C8[2014·陕西卷] △ABC的内角A,B,C所对的边分别为a,b,c.‎ ‎(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);‎ ‎(2)若a,b,c成等比数列,求cos B的最小值.‎ ‎16.解:(1)∵a,b,c成等差数列,∴a+c=2b.‎ 由正弦定理得sin A+sin C=2sin B.‎ ‎∵sin B=sin[π-(A+C)]=sin(A+C),‎ ‎∴sin A+sin C=2sin(A+C).‎ ‎(2)∵a,b,c成等比数列,∴b2=ac.‎ 由余弦定理得 cos B==≥=,‎ 当且仅当a=c时等号成立,‎ ‎∴cos B的最小值为.‎ ‎11.D2、D3[2014·天津卷] 设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.‎ ‎11.- [解析] ∵S2=‎2a1-1,S4=‎4a1+×(-1)=‎4a1-6,S1,S2,S4成等比数列,‎ ‎∴(‎2a1-1)2=a1(‎4a1-6),解得a1=-.‎ ‎22.D1,D2,M3[2014·重庆卷] 设a1=1,an+1=+b(n∈N*).‎ ‎(1)若b=1,求a2,a3及数列{an}的通项公式.‎ ‎(2)若b=-1,问:是否存在实数c使得a2nf(a2k+1)>f(1)=a2,即 ‎1>c>a2k+2>a2.‎ 再由f(x)在(-∞,1]上为减函数,得c=f(c)f(a2k+1)=a2k+2,‎ a2(k+1)=f(a2k+1)f(a2n+1),即a2n+1>a2n+2.‎ 所以a2n+1>-1,解得a2n+1>. ④‎ 综上,由②③④知存在c=使a2n60n+800?若存在,求n的最小值;若不存在,说明理由.‎ ‎18.解:(1)设数列{an}的公差为d,‎ 依题意得,2,2+d,2+4d成等比数列,‎ 故有(2+d)2=2(2+4d),‎ 化简得d2-4d=0,解得d=0或d=4.‎ 当d=0时,an=2;‎ 当d=4时,an=2+(n-1)·4=4n-2.‎ 从而得数列{an}的通项公式为an=2或an=4n-2.‎ ‎(2)当an=2时,Sn=2n,显然2n<60n+800,‎ 此时不存在正整数n,使得Sn>60n+800成立.‎ 当an=4n-2时,Sn==2n2.‎ 令2n2>60n+800,即n2-30n-400>0,‎ 解得n>40或n<-10(舍去),‎ 此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.‎ 综上,当an=2时,不存在满足题意的正整数n;‎ 当an=4n-2时,存在满足题意的正整数n,其最小值为41.‎ ‎17.D1、D3、D5[2014·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an+1=3an+1.‎ ‎(1)证明是等比数列,并求{an}的通项公式;‎ ‎(2)证明++…+<.‎ ‎17.解:(1)由an+1=3an+1得an+1+=3.‎ 又a1+=,所以是首项为,公比为3的等比数列,所以an+=,因此数列{an}的通项公式为an=.‎ ‎(2)证明:由(1)知=.‎ 因为当n≥1时,3n-1≥2×3n-1,‎ 所以≤,即=≤.‎ 于是++…+≤1++…+=<.‎ 所以++…+<.‎ ‎19.D2,D3,D4[2014·山东卷] 已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)令bn=(-1)n-1,求数列{bn}的前n项和Tn.‎ ‎19.解: (1)因为S1=a1,S2=‎2a1+×2=‎2a1+2,‎ S4=‎4a1+×2=‎4a1+12,‎ 由题意得(‎2a1+2)2=a1(‎4a1+12),解得a1=1,‎ 所以an=2n-1.‎ ‎(2)由题意可知,‎ bn=(-1)n-1 ‎=(-1)n-1 ‎=(-1)n-1.‎ 当n为偶数时,‎ Tn=-+…+- ‎=1- ‎=.‎ 当n为奇数时,‎ Tn=-+…-+ ‎=1+ ‎=.‎ 所以Tn= ‎16.D2,D3,C8[2014·陕西卷] △ABC的内角A,B,C所对的边分别为a,b,c.‎ ‎(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);‎ ‎(2)若a,b,c成等比数列,求cos B的最小值.‎ ‎16.解:(1)∵a,b,c成等差数列,∴a+c=2b.‎ 由正弦定理得sin A+sin C=2sin B.‎ ‎∵sin B=sin[π-(A+C)]=sin(A+C),‎ ‎∴sin A+sin C=2sin(A+C).‎ ‎(2)∵a,b,c成等比数列,∴b2=ac.‎ 由余弦定理得 cos B==≥=,‎ 当且仅当a=c时等号成立,‎ ‎∴cos B的最小值为.‎ ‎11.D2、D3[2014·天津卷] 设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.‎ ‎11.- [解析] ∵S2=‎2a1-1,S4=‎4a1+×(-1)=‎4a1-6,S1,S2,S4成等比数列,‎ ‎∴(‎2a1-1)2=a1(‎4a1-6),解得a1=-.‎ ‎19.A1、D3、E7[2014·天津卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},‎ 集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.‎ ‎(1)当q=2,n=3时,用列举法表示集合A.‎ ‎(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an0,于是(a2n+1-a2n)+(a2n-a2n-1)>0.①‎ 因为<,所以|a2n+1-a2n|<|a2n-a2n-1|.②‎ 由①②知,a2n-a2n-1>0,因此a2n-a2n-1==.③‎ 因为{a2n}是递减数列,同理可得,a2n+1-a2n<0,故a2n+1-a2n=-=.④‎ 由③④可知,an+1-an=.‎ 于是an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+-+…+=1+·=+·.‎ 故数列{an}的通项公式为an=+·.‎ ‎21.B11、M3、D5[2014·安徽卷] 设实数c>0,整数p>1,n∈N*.‎ ‎(1)证明:当x>-1且x≠0时,(1+x)p>1+px;‎ ‎(2)数列{an}满足a1>c,an+1=an+a,证明:an>an+1>c.‎ ‎21.证明:(1)用数学归纳法证明如下.‎ ‎①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.‎ ‎②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.‎ 当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.‎ 所以当p=k+1时,原不等式也成立.‎ 综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.‎ ‎(2)方法一:先用数学归纳法证明an>c.‎ ‎①当n=1时,由题设知a1>c成立.‎ ‎②假设n=k(k≥1,k∈N*)时,不等式ak>c成立.‎ 由an+1=an+a易知an>0,n∈N*.‎ 当n=k+1时,=+a=‎ ‎1+.‎ 由ak>c>0得-1<-<<0.‎ 由(1)中的结论得=>1+p· =.‎ 因此a>c,即ak+1>c,‎ 所以当n=k+1时,不等式an>c也成立.‎ 综合①②可得,对一切正整数n,不等式an>c均成立.‎ 再由=1+可得<1,‎ 即an+1an+1>c,n∈N*.‎ 方法二:设f(x)=x+x1-p,x≥c,则xp≥c,‎ 所以f′(x)=+(1-p)x-p=>0.‎ 由此可得,f(x)在[c,+∞)上单调递增,因而,当x>c时,f(x)>f(c)=c.‎ ‎①当n=1时,由a1>c>0,即a>c可知 a2=a1+a=a1c,从而可得a1>a2>c,‎ 故当n=1时,不等式an>an+1>c成立.‎ ‎②假设n=k(k≥1,k∈N*)时,不等式ak>ak+1>c成立,则当n=k+1时,f(ak)>f(ak+1)>f(c),‎ 即有ak+1>ak+2>c,‎ 所以当n=k+1时,原不等式也成立.‎ 综合①②可得,对一切正整数n,不等式an>an+1>c均成立.‎ ‎18.D2、D3、D5[2014·湖北卷] 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.‎ ‎(1)求数列{an}的通项公式.‎ ‎(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.‎ ‎18.解:(1)设数列{an}的公差为d,‎ 依题意得,2,2+d,2+4d成等比数列,‎ 故有(2+d)2=2(2+4d),‎ 化简得d2-4d=0,解得d=0或d=4.‎ 当d=0时,an=2;‎ 当d=4时,an=2+(n-1)·4=4n-2.‎ 从而得数列{an}的通项公式为an=2或an=4n-2.‎ ‎(2)当an=2时,Sn=2n,显然2n<60n+800,‎ 此时不存在正整数n,使得Sn>60n+800成立.‎ 当an=4n-2时,Sn==2n2.‎ 令2n2>60n+800,即n2-30n-400>0,‎ 解得n>40或n<-10(舍去),‎ 此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.‎ 综上,当an=2时,不存在满足题意的正整数n;‎ 当an=4n-2时,存在满足题意的正整数n,其最小值为41.‎ ‎17.D1、D4、D5[2014·江西卷] 已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.‎ ‎(1)令cn=,求数列{cn}的通项公式;‎ ‎(2)若bn=3n-1,求数列{an}的前n项和Sn.‎ ‎17.解:(1)因为anbn+1-an+1bn+2bn+1bn=0,bn≠0(n∈N*),所以-=2,即cn+1-cn=2,‎ 所以数列{cn}是以c1=1为首项,d=2为公差的等差数列,故cn=2n-1.‎ ‎(2)由bn=3n-1,知an=(2n-1)3n-1,于是数列{an}的前n项和Sn=1×30+3×31+5×32+…+(2n-1)×3n-1,3Sn=1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3n,将两式相减得-2Sn=1+2×(31+32+…+3n-1)-(2n-1)×3n=-2-(2n-2)×3n,‎ 所以Sn=(n-1)3n+1.‎ ‎17.D1、D3、D5[2014·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an+1=3an+1.‎ ‎(1)证明是等比数列,并求{an}的通项公式;‎ ‎(2)证明++…+<.‎ ‎17.解:(1)由an+1=3an+1得an+1+=3.‎ 又a1+=,所以是首项为,公比为3的等比数列,所以an+=,因此数列{an}的通项公式为an=.‎ ‎(2)证明:由(1)知=.‎ 因为当n≥1时,3n-1≥2×3n-1,‎ 所以≤,即=≤.‎ 于是++…+≤1++…+=<.‎ 所以++…+<.‎ ‎19.D5,B11[2014·四川卷] 设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图像上(n∈N*).‎ ‎(1)若a1=-2,点(a8,4b7)在函数f(x)的图像上,求数列{an}的前n项和Sn;‎ ‎(2)若a1=1,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2-,求数列的前n项和Tn.‎ ‎19.解:(1)由已知得,b7=‎2a7,b8=‎2a8=4b7,所以 ‎2a‎8=4×‎2a7=‎2a7+2,解得d=a8-a7=2,‎ 所以Sn=na1+d=-2n+n(n-1)=n2-3n.‎ ‎(2)函数f(x)=2x在点(a2,b2)处的切线方程为y-‎2a2=(‎2a2ln 2)(x-a2),‎ 其在x轴上的截距为a2-.‎ 由题意有a2-=2-,解得a2=2.‎ 所以d=a2-a1=1.‎ 从而an=n,bn=2n,‎ 所以数列{}的通项公式为=,‎ 所以Tn=+++…++,‎ ‎2Tn=+++…+,‎ 因此,2Tn-Tn=1+++…+-=2--=.‎ 所以,Tn=.‎ ‎19.D5[2014·浙江卷] 已知数列{an}和{bn}满足a‎1a2a3…an=()bn(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.‎ ‎(1)求an与bn.‎ ‎(2)设cn=-(n∈N*).记数列{cn}的前n项和为Sn.‎ ‎(i)求Sn;‎ ‎(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.‎ ‎19.解:(1)由题意a‎1a2a3…an=()bn,b3-b2=6,‎ 知a3=()b3-b2=8.‎ 又由a1=2,得公比q=2(q=-2舍去),所以数列{an}的通项为an=2n(n∈N*).‎ 所以,a‎1a2a3…an=2=()n(n+1).‎ 故数列{bn}的通项为bn=n(n+1)(n∈N*).‎ ‎(2)(i)由(1)知cn=-=-(n∈N*).‎ 所以Sn=-(n∈N*).‎ ‎(ii)因为c1=0,c2>0,c3>0,c4>0,‎ 当n≥5时,cn=,‎ 而-=>0,‎ 得≤<1,‎ 所以,当n≥5时,cn<0.‎ 综上,若对任意n∈N*恒有Sk≥Sn,则k=4.‎ ‎3.[2014·闽南四校期末] 若数列{an}的前n项和为Sn=an+,则数列{an}的通项公式为(  )‎ A.an=-2n-1 ‎ B.an=(-2)n-1‎ C.an=(-2)n ‎ D.an=-2n ‎3.B [解析] 由an=Sn-Sn-1(n≥2),得an=an-an-1.∴an=-2an-1.又a1=1,∴an=(-2)n-1(n≥2).又a1=(-2)1-1=1,∴an=(-2)n-1.‎ ‎6.[2014·南昌联考] 已知数列{an}满足a1=1,an+1=(n∈N*).若bn+1=(n-λ),b1=-λ,且数列{bn}是递增数列,则实数λ的取值范围为(  )‎ A.λ<2 B.λ>3‎ C.λ>2 D.λ<3‎ ‎6.A [解析] 易知=+1,∴+1=2+1.‎ 又a1=1,∴+1=+12n-1=2n,∴bn+1=(n-λ)2n,‎ ‎∴bn+1-bn=(n-λ)2n-(n-1-λ)2n-1=(n-λ+1)2n-1>0,∴n-λ+1>0.又n∈N*,∴λ<2.‎ ‎4.[2014·广州调研] 已知数列{an}满足a1=,an+1=,n∈N*.‎ ‎(1)求证:数列为等比数列.‎ ‎(2)是否存在互不相等的正整数m,s,t,使m,s,t成等差数列,且am-1,as-1,at-1成等比数列?如果存在,求出所有符合条件的m,s,t;如果不存在,请说明理由.‎ ‎4.解:(1)证明:因为an+1=,所以=+,‎ 所以-1=-1.‎ 因为a1=,所以-1=,‎ 所以数列是首项为,公比为的等比数列.‎ ‎(2)由(1)知,-1=×n-1=,所以an=.‎ 假设存在互不相等的正整数m,s,t满足条件,‎ 则有 由an=与(as-1)2=(am-1)(at-1),‎ 得-12=-1-1,‎ 即‎3m+t+2×‎3m+2×3t=32s+4×3s.‎ 因为m+t=2s,所以‎3m+3t=2×3s.‎ 又‎3m+3t≥2 =2×3s,当且仅当m=t时,等号成立,‎ 这与m,s,t互不相等矛盾,‎ 所以不存在互不相等的正整数m,s,t满足条件.‎ ‎2.[2014·景德镇质检] 已知递增数列{an}满足a1+a2+a3+…+an=(a+n).‎ ‎(1)求a1及数列{an}的通项公式;‎ ‎(2)设cn=求数列{cn}的前2n项和T2n.‎ ‎2.解:(1)当n=1时,a1=(a+1),解得a1=1.‎ 当n≥2时,a1+a2+a3+…+an-1=(a+n-1),‎ a1+a2+a3+…+an=(a+n),‎ 所以an=(a-a+1),‎ 即(an-1)2-a=0,‎ 所以an-an-1=1或an+an-1=1(n≥2).‎ 又因为数列{an}为递增数列,所以an-an-1=1,‎ 所以数列{an}是首项为1,公差为1的等差数列,‎ 所以an=n.‎ ‎(2)由cn= 得cn= 则T2n=(2+4+…+2n)+[1×21+3×23+…+(2n-1)×22n-1]+n=n(n+1)+[1×21+3×23+…+(2n-1)×22n-1]+n.‎ 记Sn=1×21+3×23+…+(2n-1)×22n-1,①‎ 则4Sn=1×23+3×25+…+(2n-1)×22n+1.②‎ 由①-②,得 ‎-3Sn=2+24+26+…+22n-(2n-1)22n+1,‎ ‎=22+24+26+…+22n-(2n-1)22n+1-2,‎ 所以-3Sn=-(2n-1)22n+1-2,‎ 所以Sn=++,‎ 即Sn=+,‎ 故T2n=+n2+2n+.‎ ‎7.[2014·福建闽南四校期末] 已知数列{an}是公差为2的等差数列,且a1,a2,a5成等比数列,则a2的值为(  )‎ A.3 B.-‎3 C.2 D.-2‎ ‎7.A [解析] ∵a1,a2,a5成等比数列,∴a=a1·a5,‎ ‎∴a=(a2-2)(a2+6),解得a2=3.‎ ‎10.[2014·郑州质检] 已知各项不为0的等差数列{an}满足a4-‎2a+‎3a8=0,数列{bn}是等比数列,且b7=a7,则b2b8b11等于(  )‎ A.1 B.2‎ C.4 D.8‎ ‎10.D [解析] 由已知,得‎2a=a4+‎3a8=a1+3d+‎3a1+21d=‎4a1+24d=4(a1+6d)=‎4a7,∴a7=2或a7=0(舍去),‎ ‎∴b7=2,∴b2b8b11=b1q·b1q7·b1q10=bq18=(b1q6)3=b=8.‎ ‎17.[2014·温州十校联考] 已知二次函数f(x)=ax2+bx的图像过点(-4n,0),且f′(0)=2n,n∈N*,数列{an}满足=f′,且a1=4.‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)记bn=,求数列{bn}的前n项和Tn.‎ ‎17.解:(1)f′(x)=2ax+b.‎ 由题意知f′(0)=b=2n,16n‎2a-4nb=0,‎ ‎∴a=,b=2n,∴f(x)=x2+2nx,n∈N*.‎ 又数列{an}满足=f′,f′(x)=x+2n,‎ ‎∴=+2n,‎ ‎∴-=2n.‎ 由叠加法可得-=2+4+6+…+2(n-1)=n2-n,化简可得an=(n≥2).‎ 当n=1时,a1=4也符合上式,∴an=(n∈N*).‎ ‎(2)∵bn===2-,‎ ‎∴Tn=b1+b2+…+bn=++…+=‎ ‎21-+-+…+-=21-=.‎