- 4.03 MB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012高考试题分类汇编:立体几何
一、选择题
1、【2012高考陕西文8】将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )
2、【2012高考新课标文7】如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为( )
3、【2012高考全国文8】已知正四棱柱中 ,,,为的中点,则直线与平面的距离为
(A) (B) (C) (D)
4、【2012高考江西文7】若一个几何体的三视图如图所示,则此几何体的体积为
A. B.5 C.4 D.
5、【2012高考湖南文4】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是
6、【2012高考广东文7】某几何体的三视图如图1所示,它的体积为
图1
正视图
俯视图
侧视图
5
5
6
3
5
5
6
3
A. B. C. D.
7、【2102高考福建文4】一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是
A 球 B 三棱锥 C 正方体 D 圆柱
8、【2012高考重庆文9】设四面体的六条棱的长分别为1,1,1,1,和且长为的棱与长为的棱异面,则的取值范围是
(A) (B) (C)(D)
9、【2012高考浙江文3】已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是
A.1cm3 B.2cm3 C.3cm3 D.6cm3
10、【2012高考浙江文5】 设是直线,a,β是两个不同的平面
A. 若∥a,∥β,则a∥β B. 若∥a,⊥β,则a⊥β
C. 若a⊥β,⊥a,则⊥β D. 若a⊥β, ∥a,则⊥β
11、【2012高考四川文6】下列命题正确的是( )
A、若两条直线和同一个平面所成的角相等,则这两条直线平行
B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D、若两个平面都垂直于第三个平面,则这两个平面平行
12、【2102高考北京文7】某三棱锥的三视图如图所示,该三棱锥的表面积是
(A)28+(B)30+(C)56+(D)60+
13、【2012高考新课标文8】平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为
(A)π (B)4π (C)4π (D)6π
14、【2012高考四川文10】如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为( )
A、 B、 C、 D、
二、填空题
15、【2012高考安徽文12】某几何体的三视图如图所示,则该几何体的体积等于______。
16、【2012高考全国文16】已知正方体中,、分别为的中点,那么异面直线与所成角的余弦值为____________.
17、【2012高考山东文13】如图,正方体的棱长为1,E为线段上的一点,则三棱锥的体积为_____.
18、【2012高考安徽文15】若四面体的三组对棱分别相等,即,,,则______(写出所有正确结论编号)。
①四面体每组对棱相互垂直
②四面体每个面的面积相等
③从四面体每个顶点出发的三条棱两两夹角之和大于而小于
④连接四面体每组对棱中点的线段互垂直平分
⑤从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长
19、【2012高考天津文科10】一个几何体的三视图如图所示(单位:m),则该几何体的体
积 .
20、【2012高考辽宁文16】已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2正方形。若PA=2,则△OAB的面积为______________.
21、【2012高考江苏7】如图,在长方体中,,,则四棱锥的体积为 ▲ cm3.
22、【2012高考辽宁文13】一个几何体的三视图如图所示,则该几何体的体积为_______________.
23、【2012高考湖北文15】已知某几何体的三视图如图所示,则该几何体的体积为____________.
24、【2012高考上海文5】一个高为2的圆柱,底面周长为,该圆柱的表面积为
25、【2012高考四川文14】如图,在正方体中,、分别是、的中点,则异面直线与所成的角的大小是____________。
三、解答题
26、【2012高考重庆文20】(Ⅰ)小问4分,(Ⅱ)小问8分)已知直三棱柱中,,,为的中点。(Ⅰ)求异面直线和的距离;(Ⅱ)若,求二面角的平面角的余弦值。
27、【2012高考湖南文19】
如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
[中国^教*~育出#版%
28、【2012高考陕西文18】
直三棱柱ABC- A1B1C1中,AB=A A1 ,=
(Ⅰ)证明;
(Ⅱ)已知AB=2,BC=,求三棱锥 的体积
29、【2012高考辽宁文18】
如图,直三棱柱,,AA′=1,点M,N分别为和的中点。
(Ⅰ)证明:∥平面;
(Ⅱ)求三棱锥的体积。
(椎体体积公式V=Sh,其中S为地面面积,h为高)
30、 【2012高考江苏16】如图,在直三棱柱中,,分别是棱上的点(点 不同于点),且为的中点.
求证:(1)平面平面;
(2)直线平面.
31、【2102高考福建文19】
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
32、【2012高考江西文19】
如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.
(1) 求证:平面DEG⊥平面CFG;
(2) 求多面体CDEFG的体积。
33、【2012高考新课标文19】
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点
(I)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.
C
B
A
D
C1
A1
34、【2012高考浙江文20】如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点。
(1)证明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值。
35、【2012高考山东文19】
如图,几何体是四棱锥,△为正三角形,.
(Ⅰ)求证:;
(Ⅱ)若∠,M为线段AE的中点,
求证:∥平面.
36、【2012高考湖北文19】
某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2。
A.证明:直线B1D1⊥平面ACC2A2;
B.现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?
37、【2012高考广东文18】
如图5所示,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高.
(1)证明:平面;
(2)若,,,求三棱
锥的体积;
(3)证明:平面.
38、【2012高考全国文19】
如图,四棱锥中,底面为菱形,底面,,,是上的一点,。
(Ⅰ)证明:平面;
(Ⅱ)设二面角为,求与平面所成角的大小。
39、【2012高考四川文19】
如图,在三棱锥中,,,,点在平面
内的射影在上。
(Ⅰ)求直线与平面所成的角的大小;
(Ⅱ)求二面角的大小。
命题立意:本题主要考查本题主要考查直线与平面的位置关系,线面角的概念,二面角的概念等基础知识,考查空间想象能力,利用向量解决立体几何问题的能力.
40、 【2012高考上海文19】
如图,在三棱锥中,⊥底面,是的中点,已知∠=,,,,求:
(1)三棱锥的体积
(2)异面直线与所成的角的大小(结果用反三角函数值表示)
41、【2012高考天津文科17】
如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.
(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值。
42、【2102高考北京文16】如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2。
(I)求证:DE∥平面A1CB;
(II)求证:A1F⊥BE;
(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由。
43、【2012高考安徽文19】
如图,长方体中,底面是正方形,是的中点,是棱上任意一点。
(Ⅰ)证明: ;
(Ⅱ)如果=2,=,,,求 的长。
以下是答案
一、选择题
1、 B
2、 B
3、 D
4、 D
5、 D
6、 C
7、 D
8、 A
9、 C
10、 B
11、 C
12、 B
13、 B
14、 A
二、填空题
15、 56
16、
17、
18、 ②④⑤
19、 30
20、
21、 6。【考点】正方形的性质,棱锥的体积。
22、 12+π【点评】本题主要考查几何体的三视图、柱体的体积公式,考查空间想象能力、运算求解能力,属于容易题。本题解决的关键是根据三视图还原出几何体,确定几何体的形状,然后再根据几何体的形状计算出体积。
23、
24、
25、
三、解答题
26、 (Ⅰ)(Ⅱ)
【解析】(Ⅰ)如答(20)图1,因AC=BC, D为AB的中点,故CD AB。又直三棱柱中, 面 ,故 ,所以异面直线 和AB的距离为
(Ⅱ):由故 面 ,从而 ,故 为所求的二面角的平面角。
因是在面上的射影,又已知 由三垂线定理的逆定理得从而
,都与互余,因此,所以≌,因此得
从而
所以在中,由余弦定理得
27、
【解析】(Ⅰ)因为
又是平面PAC内的两条相较直线,所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD平面PAC,
所以是直线PD和平面PAC所成的角,从而.
由BD平面PAC,平面PAC,知.
在中,由,得PD=2OD.
因为四边形ABCD为等腰梯形,,所以均为等腰直角三角形,
从而梯形ABCD的高为于是梯形ABCD面积
在等腰三角形AOD中,
所以
故四棱锥的体积为.
【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD平面PAC即可,第二问由(Ⅰ)知,BD平面PAC,所以是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由算得体积.
28、
29、
30、证明:(1)∵是直三棱柱,∴平面。
又∵平面,∴。
又∵平面,∴平面。
又∵平面,∴平面平面。
(2)∵,为的中点,∴。
又∵平面,且平面,∴。
又∵平面,,∴平面。
由(1)知,平面,∴∥。
又∵平面平面,∴直线平面
【考点】直线与平面、平面与平面的位置关系。
【解析】(1)要证平面平面,只要证平面上的平面即可。它可由已知是直三棱柱和证得。
(2)要证直线平面,只要证∥平面上的即可。
31、
32、
33、
34、
【解析】(1)(i)因为, 平面ADD1 A1,所以平面ADD1 A1.
又因为平面平面ADD1 A1=,所以.所以.
(ii) 因为,所以,
又因为,所以,
在矩形中,F是AA的中点,即.即
,故.
所以平面.
(2) 设与交点为H,连结.
由(1)知,所以是与平面所成的角. 在矩形中,,,得,在直角中,,,得
,所以BC与平面所成角的正弦值是.
35、(I)设中点为O,连接OC,OE,则由知 ,,
又已知,所以平面OCE.
所以,即OE是BD的垂直平分线,
所以.
(II)取AB中点N,连接,
∵M是AE的中点,∴∥,
∵△是等边三角形,∴.
由∠BCD=120°知,∠CBD=30°,所以∠ABC=60°+30°=90°,即,
所以ND∥BC,
所以平面MND∥平面BEC,故DM∥平面BEC.
36、
37、 【解析】(1)证明:因为平面,
所以。
因为为△中边上的高,
所以。
因为,
所以平面。
(2)连结,取中点,连结。
因为是的中点,
所以。
因为平面,
所以平面。
则,
。
(3)证明:取中点,连结,。
因为是的中点,
所以。
因为,
所以,
所以四边形是平行四边形,
所以。
因为,
所以。
因为平面,
所以。
因为,
所以平面,
所以平面。
38、
39、
40、
41、
42、
43、