- 973.50 KB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题19 坐标系与参数方程
【2013高考真题】
(2013·新课标Ⅰ文)(23)(本小题10分)选修4—4:坐标系与参数方程
已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为。
(Ⅰ)把的参数方程化为极坐标方程;
(Ⅱ)求与交点的极坐标()。
(2013·新课标Ⅱ卷)(23)(本小题满分10分)选修4—4;坐标系与参数方程
已知动点,Q都在曲线C:(β为参数)上,对应参数分别为
与(0<<2π),M为PQ的中点。
(Ⅰ)求M的轨迹的参数方程
(Ⅱ)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点。
(2013·陕西文)C. (坐标系与参数方程选做题) 圆锥曲线 (t为参数)的焦点坐标是 .
(2013·辽宁文)23(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中以为极点,轴正半轴为极轴建立坐标系.圆,直线的极坐标方程分别为.
(I)
(II)
(2013·广东文)14.(坐标系与参数方程选做题)
已知曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立直角坐标系,则曲线的参数方程为 .
【2012高考真题】
【2012·辽宁卷】在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);
(2)求圆C1与C2的公共弦的参数方程.
【2012·课标全国卷】已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
【2012·江苏卷】在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.
【2012·湖南卷】 在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=________.
圆的方程为x2+y2=a2,把交点代入得2+02=a2,又a>0,所以a=.
【2012·广东卷】 (坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和(t为参数),则曲线C1与C2的交点坐标为________.
【2012·陕西卷】直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为________.
【答案】 【解析】本题考查了极坐标的相关知识,解题的突破口为把极坐标化为直角坐标.由2ρcosθ=1得2x=1①,由ρ=2cosθ得ρ2=2ρcosθ,即x2+y2=2x②,联立①②得y=±,所以弦长为.
【2011高考真题】
(2011·陕西卷)(坐标系与参数方程选做题)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:ρ=1上,则|AB|的最小值为________.
(2011·湖南卷)在直角坐标系xOy中,曲线C1的参数方程为(α为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρ(cosθ-sinθ)+1=0,则C1与C2的交点个数为________.
(2011·辽宁卷)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.
(1)分别说明C1,C2是什么曲线,并求出a与b的值;
(2)设当α=时,l与C1,C2的交点分别为A1,B1,当α=-时,l与C1,C2的交点分别为A2,B2,求四边形A1A2B2B1的面积.
(2011·课标全国卷)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)
M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.
(1)求C2的参数方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
【2010高考真题】
1.(2010年高考安徽卷理科7)设曲线的参数方程为(为参数),直线的方程为,则曲线上到直线距离为的点的个数为
A、1 B、2 C、3 D、4
2.(2010年高考北京卷理科5)极坐标方程(p-1)()=(p0)表示的图形是
(A)两个圆 (B)两条直线
(C)一个圆和一条射线 (D)一条直线和一条射线
3. (2010年高考重庆市理科8) 直线与圆心为D的圆交于A、B两点,则直线AD与BD的倾斜角之和为
(A) π (B) π (C) π (D) π
4.(2010年高考天津卷理科13)已知圆C的圆心是直线(为参数)与轴的交点,且圆C与直线相切。则圆C的方程为 。
5.(2010年高考广东卷理科15)(坐标系与参数方程选做题)在极坐标系(ρ,θ)(0 ≤ θ<2π)中,曲线ρ= 与 的交点的极坐标为______.
6.(2010年高考陕西卷理科15)(坐标系与参数方程选做题)已知圆的参数方程(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,则直线与圆的交点的直角坐标为.
7.(2010·福建)在直角坐标系xOy中,直线l的参数方程为(t为参数).
在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2sin θ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(3,),求|PA|+|PB|.
8.(2010年高考江苏卷试题21)选修4-4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值。
【解析】本题主要考查曲线的极坐标方程等基本知识,考查转化问题的能力。满分10分。
解:,圆ρ=2cosθ的普通方程为:,
直线3ρcosθ+4ρsinθ+a=0的普通方程为:,
又圆与直线相切,所以解得:,或。
9. (2010年全国高考宁夏卷23)(本小题满分10分)选修4-4:坐标系与参数方程
已知直线C1(t为参数),C2(为参数),
(Ⅰ)当=时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为,P为OA中点,当变化时,求P
点的轨迹的参数方程,并指出它是什么曲线。
【2009高考真题】
1.(2009广东卷理)(坐标系与参数方程选做题)若直线(为参数)与直线(为参数)垂直,则 .
【解析】,得.
【答案】-1
2.(2009宁夏、海南)(本小题满分10分)选修4—4:坐标系与参数方程。
已知曲线C: (t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。w.w.w.k.s.5.u.c.o.m
【2008年高考真题】
1.(2008广东)已知曲线的极坐标方程分别为,,则曲线与交点的极坐标为 .
【解析】我们通过联立解方程组解得,即两曲线的交点为。
2.(2008宁夏、海南)选修4-4;坐标系与参数方程
已知曲线C1:(为参数),曲线C2:(t为参数).
(Ⅰ)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;
(Ⅱ)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线.写出的参数方程.与公共点的个数和C公共点的个数是否相同?说明你的理由.