- 6.36 MB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【2012高考试题】
一、选择题
1.【2012高考真题重庆理1】在等差数列中,,则的前5项和=
A.7 B.15 C.20 D.25
2.【2012高考真题浙江理7】设是公差为d(d≠0)的无穷等差数列﹛an﹜的前n项和,则下列命题错误的是
A.若d<0,则数列﹛Sn﹜有最大项
B.若数列﹛Sn﹜有最大项,则d<0
C.若数列﹛Sn﹜是递增数列,则对任意,均有
D. 若对任意,均有,则数列﹛Sn﹜是递增数列
3.【2012高考真题新课标理5】已知为等比数列,,,则( )
【答案】D
【解析】因为为等比数列,所以,又,所以或.若,解得,
;若,解得,仍有,综上选D.
4.【2012高考真题上海理18】设,,在中,正数的个数是( )
A.25 B.50 C.75 D.100
5.【2012高考真题辽宁理6】在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=
(A)58 (B)88 (C)143 (D)176
【答案】B
【解析】在等差数列中,,答案为B
6.【2012高考真题四川理12】设函数,是公差为的等差数列,,则( )
A、 B、 C、 D、
7.【2012高考真题湖北理7】定义在上的函数
,如果对于任意给定的等比数列, 仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:
①; ②; ③; ④.
则其中是“保等比数列函数”的的序号为
A. ① ② B.③ ④ C.① ③ D.② ④
8.【2012高考真题福建理2】等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为
A.1 B.2 C.3 D.4
【答案】B.
【解析】由等差中项的性质知,又.故选B.
9.【2012高考真题安徽理4】公比为等比数列的各项都是正数,且,则=( )
【答案】B
【解析】.
10.【2012高考真题全国卷理5】已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列的前100项和为
(A) (B) (C) (D)
【答案】A
二、填空题
11.【2012高考真题浙江理13】设公比为q(q>0)的等比数列{an}的前n项和为Sn。若S2=3a2+2,S4=3a4+2,则q=______________。
【答案】
【解析】将,两个式子全部转化成用,q表示的式子.
即,两式作差得:,即:,解之得:(舍去).
12.【2012高考真题四川理16】记为不超过实数的最大整数,例如,,,。设为正整数,数列满足,,现有下列命题:
①当时,数列的前3项依次为5,3,2;
②对数列都存在正整数,当时总有;
③当时,;
④对某个正整数,若,则。
其中的真命题有____________。(写出所有真命题的编号)
【答案】①③④
【解析】当时, ,
,故①正确;同样验证可得③④正确,②错误.
13.【2012高考真题新课标理16】数列满足,则的前项和为
14.【2012高考真题辽宁理14】已知等比数列{an}为递增数列,且,则数列{an}的通项公式an =______________。
【答案】
【解析】
15.【2012高考真题江西理12】设数列{an},{bn}都是等差数列,若,,则__________。
【答案】35
【解析】设数列的公差分别为,则由,得,即,所以,
所以。
16.【2012高考真题北京理10】已知等差数列为其前n项和。若,,则=_______。
18.【2012高考真题重庆理12】 .
【答案】
【解析】
19.【2012高考真题上海理6】有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则 。
【答案】。
【解析】由题意可知,该列正方体的体积构成以1为首项,为公比的等比数列,
∴++…+==,∴。
20.【2012高考真题福建理14】数列{an}的通项公式,前n项和为Sn,则S2012=___________.
三、解答题
21【2012高考江苏20】(16分)已知各项均为正数的两个数列和满足:,,
(1)设,,求证:数列是等差数列;
(2)设,,且是等比数列,求和的值.
【答案】解:(1)∵,∴。
∴ 。
∴ 。
∴数列是以1 为公差的等差数列。
(2)∵,∴。
∴。(﹡)
设等比数列的公比为,由知,下面用反证法证明
若则,∴当时,,与(﹡)矛盾。
【解析】(1)根据题设和,求出,从而证明而得证。
(2)根据基本不等式得到,用反证法证明等比数列的公比。
从而得到的结论,再由知是公比是的等比数列。最后用反证法求出。
22.【2012高考真题湖北理18】(本小题满分12分)
已知等差数列前三项的和为,前三项的积为.
(Ⅰ)求等差数列的通项公式;
(Ⅱ)若,,成等比数列,求数列的前项和.
(Ⅱ)当时,,,分别为,,,不成等比数列;
当时,,,分别为,,,成等比数列,满足条件.
故
记数列的前项和为.
当时,;当时,;
当时,
. 当时,满足此式.
综上,
23.【2012高考真题广东理19】(本小题满分14分)
设数列{an}的前n项和为Sn,满足,n∈N﹡,且a1,a2+5,a3成等差数列.
(1) 求a1的值;
(2) 求数列{an}的通项公式.
(3) 证明:对一切正整数n,有.
【答案】本题考查由数列的递推公式求通项公式,不等式证明问题,考查了学生的运算求解能力与推理论证能力,难度一般.
25.【2012高考真题四川理20】(本小题满分12分) 已知数列的前项和为,且对一切正整数都成立。
(Ⅰ)求,的值;
(Ⅱ)设,数列的前项和为,当为何值时,最大?并求出的最大值。
【答案】本题主要考查等比数列、等差数列的概念和前n项和公式,以及对数运算等基础知识,考查逻辑推理能力,基本运算能力,以及方程与函数、化归与转化等数学思想
26.【2012高考真题四川理22】(本小题满分14分)
已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。
(Ⅰ)用和表示;
(Ⅱ)求对所有都有成立的的最小值;
(Ⅲ)当时,比较与的大小,并说明理由。
【答案】本题主要考查导数的应用、不等式、数列等基础知识,考查基本运算能力、逻辑推理能力、分析问题与解决问题的能力和创新意识,考查函数与方程、数形结合、分类讨论、化归与转化由特殊到一般等数学思想
27.【2012高考真题广东理19】(本小题满分14分)
设数列{an}的前n项和为Sn,满足,n∈N﹡,且a1,a2+5,a3成等差数列.
(1) 求a1的值;
(2) 求数列{an}的通项公式.
(3) 证明:对一切正整数n,有.
【答案】本题考查由数列的递推公式求通项公式,不等式证明问题,考查了学生的运算求解能力与推理论证能力,难度一般.
29.【2012高考真题重庆理21】(本小题满分12分,(I)小问5分,(II)小问7分.)
设数列的前项和满足,其中.
(I)求证:是首项为1的等比数列;
(II)若,求证:,并给出等号成立的充要条件.
【答案】
30.【2012高考真题江西理17】(本小题满分12分)
已知数列{an}的前n项和,,且Sn的最大值为8.
(1)确定常数k,求an;
(2)求数列的前n项和Tn。
【答案】
31.【2012高考真题安徽理21】(本小题满分13分)
数列满足:
(I)证明:数列是单调递减数列的充分必要条件是;
(II)求的取值范围,使数列是单调递增数列。
【答案】本题考查数列的概念及其性质,不等式及其性质,充要条件的意义,数列与函数的关系等基础知识,考查综合运用知识分析问题的能力,推理论证和运算求解能力。
【解析】(I)必要条件
当时,数列是单调递减数列。
充分条件
数列是单调递减数列,
得:数列是单调递减数列的充分必要条件是。
(II)由(I)得:,
①当时,,不合题意;
②当时,,
,
。
32.【2012高考真题天津理18】(本小题满分13分)
已知是等差数列,其前n项和为Sn,是等比数列,且,
.
(Ⅰ)求数列与的通项公式;
(Ⅱ)记,,证明().
【答案】
33.【2012高考真题湖南理19】(本小题满分12分)
已知数列{an}的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,……
(1) 若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式.
(2) 证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意,三个数A(n),B(n),C(n)组成公比为q的等比数列.
【答案】解(1)对任意,三个数是等差数列,所以
即亦即
故数列是首项为1,公差为4的等差数列.于是
(Ⅱ)(1)必要性:若数列是公比为q的等比数列,则对任意,有
由知,均大于0,于是
即==,所以三个数组成公比为的等比数列.
【解析】
【2011年高考试题】
1. (2011年高考四川卷理科8)数列的首项为, 为等差数列且 .若则,,则( )
(A)0 (B)3 (C)8 (D)11
答案:B
解析:由已知知由叠加法.
2.(2011年高考全国卷理科4)设为等差数列的前项和,若,公差,,则
(A)8 (B)7 (C)6 (D)5
3. (2011年高考广东卷理科11)等差数列前9项的和等于前4项的和.若,则 .
【答案】10
【解析】由题得
5. (2011年高考湖北卷理科13)《九章算术》“竹九节”问题:现有一根9节的竹子,自下而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升
答案:
解析:设从上往下的9节竹子的容积依次为a1,a2,,……,a9,公差为d,则有a1+a2+a3+a4=3, a7+a8+a9=4,即4a5-10d=3,3a5+9d=4,联立解得:.即第5节竹子的容积.
5.(2011年高考陕西卷理科14)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。
【答案】2000
【解析】设树苗集中放置在第号坑旁边,则20名同学返所走的路程总和为
=即时.
6.(2011年高考重庆卷理科11)在等差数列中,,则
解析:74. ,故
7.(2011年高考江苏卷13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是________
8.(2011年高考北京卷理科11)在等比数列{an}中,a1=,a4=-4,则公比q=______________;____________。
【答案】—2
9. (2011年高考山东卷理科20)(本小题满分12分)
等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足:,求数列的前项和.
【解析】(I)当时,不合题意;
当时,当且仅当时,符合题意;
当时,不合题意。
因此
所以公式q=3,
故
10.(2011年高考辽宁卷理科17)(本小题满分12分)
已知等差数列{an}满足a2=0,a6+a8= -10
(I)求数列{an}的通项公式;
(II)求数列的前n项和.
所以.
综上,数列的前n项和为.
11.(2011年高考浙江卷理科19)(本题满分14分)已知公差不为0的等差数列的首项 (),设数列的前n项和为,且,,成等比数列(Ⅰ)求数列的通项公式及(Ⅱ)记,,当时,试比较与的大小.[
【解析】(Ⅰ)
则 ,
(Ⅱ)
因为,所以
当时, 即;
所以当时,;当时, .
12.(2011年高考安徽卷理科18)(本小题满分13分)
在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.
(Ⅰ)求数列的通项公式;
(Ⅱ)设求数列的前项和.
(Ⅱ)由(Ⅰ)知,
又
所以数列的前项和为
13. (2011年高考天津卷理科20)(本小题满分14分)
已知数列与满足:, ,且.
(Ⅰ)求的值;
(Ⅱ)设,证明:是等比数列;
(Ⅲ)设证明:.
【解析】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论的思想方法.
(Ⅰ)解:由,,可得, 又
当n=1时,,由,,得;
当n=2时,,可得.
当n=3时,,可得.
(III)证明:由(II)可得,
于是,对任意,有
将以上各式相加,得
即,
此式当k=1时也成立.由④式得
从而
所以,对任意,
对于n=1,不等式显然成立.
所以,对任意
14. (2011年高考江西卷理科18)(本小题满分12分)
已知两个等比数列,,满足,,,.
(1)若,求数列的通项公式;
(2)若数列唯一,求的值.
15. (2011年高考湖南卷理科16)对于,将表示为,当时,
,当时,为或.记为上述表示中为的个数(例如:,
,故,),则(1) ;(2) .
答案:2; 1093
解析:(1)由题意知,所以2;
(2)通过例举可知:,,,,,,,
,且相邻之间的整数的个数有0,1,3,7,15,31,63.它们正好满足“杨辉三角”中的规律:
从而
.
评析:本小题主要考查学生的阅读理解能力、探究问题能力和创新意识.以二进制为知识背景,着重考查等比数列求和以及“杨辉三角”中的规律的理解和运用.
16. (2011年高考广东卷理科20)设数列满足,
(1) 求数列的通项公式;
(2) 证明:对于一切正整数n,
②当
(2)当时,(欲证)
,
当
综上所述
17. (2011年高考湖北卷理科19)(本小题满分13分)
已知数列的前n项和为,且满足:
(Ⅰ)求数列的通项公式;
(Ⅱ)若存在,使得成等差数列,试判断:对于任意的,且,
是否成等差数列,并证明你的结论.
本小题主要考查等差数列、等比数列基础知识,同时考查推理论证能力,以及特殊与一般的思想.
解析:
(Ⅰ)由已知,可得,两式相减可得
即又,所以当时,数列为:;
当时,由已知,所以
于是由,可得,
成等比数列,
当时,
综上,数列的通项公式为
18.(2011年高考重庆卷理科21)(本小题满分12分。(Ⅰ)小问5分,(Ⅱ)小问7分)
设实数数列的前n项和满足
(Ⅰ)若成等比数列,求和
(Ⅱ)求证:对有。
解析:(Ⅰ)由题意,得,
由是等比中项知,因此,
由,解得,
(Ⅱ)证明:有题设条件有,
故,且
从而对有 ①
19.(2011年高考四川卷理科20) (本小题共12分)
设d为非零实数,an = [C1n d+2Cn2d2+…+(n—1)Cnn-1d n-1+nCnndn](n∈N*).
(I) 写出a1,a2,a3并判断{an}是否为等比数列.若是,给出证明;若不是,说明理由;
(II)设bn=ndan (n∈N*),求数列{bn}的前n项和Sn.
解析:(1)
20.(2011年高考全国卷理科20)设数列满足且
(Ⅰ)求的通项公式;(Ⅱ)设
【解析】:(Ⅰ)由得,
前项为,
(Ⅱ)
21.(2011年高考江苏卷20)设M为部分正整数组成的集合,数列的首项,前n项和为,已知对任意整数k属于M,当n>k时,都成立
(1)设M={1},,求的值;
(2)设M={3,4},求数列的通项公式
(2)由题意:,
当时,由(1)(2)得:
由(3)(4)得:
由(1)(3)得:
由(2)(4)得:
由(7)(8)知:成等差,成等差;设公差分别为:
由(5)(6)得:
由(9)(10)得:成等差,设公差为d,
在(1)(2)中分别取n=4,n=5得:
22.(2011年高考江苏卷23)(本小题满分10分)
设整数,是平面直角坐标系中的点,其中
(1)记为满足的点的个数,求;
(2)记为满足是整数的点的个数,求
23.(2011年高考北京卷理科20)(本小题共13分)
若数列满足,数列为数列,记=.
(Ⅰ)写出一个满足,且〉0的数列;
(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。
解:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,
所以.
因为
所以为偶数,
所以要使为偶数,
即4整除.
当
时,有
当的项满足,
当不能被4整除,此时不存在E数列An,
使得
24.(2011年高考福建卷理科16)(本小题满分13分)
已知等比数列{an}的公比q=3,前3项和S3=。
(I)求数列{an}的通项公式;
(II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。
25.(2011年高考上海卷理科22)(18分)已知数列和的通项公式分别为,(),将集合
中的元素从小到大依次排列,构成数列
。
(1)求;
(2)求证:在数列中.但不在数列中的项恰为;
(3)求数列的通项公式。
【2010年高考试题】
(2010浙江理数)(3)设为等比数列的前项和,,则
(A)11 (B)5 (C) (D)
解析:解析:通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选D,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式,属中档题
(2010全国卷2理数)(4).如果等差数列中,,那么
(A)14 (B)21 (C)28 (D)35
(2010辽宁理数)(6)设{an}是有正数组成的等比数列,为其前n项和。已知a2a4=1, ,则
(A) (B) (C) (D)
【答案】B
【命题立意】本题考查了等比数列的通项公式与前n项和公式,考查了同学们解决问题的能力。
【解析】由a2a4=1可得,因此,又因为,联力两式有,所以q=,所以,故选B。
(2010江西理数)5.等比数列中,,=4,函数,则( )
A. B. C. D.
【答案】C
【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x项均取0,则只与函数的一次项有关;得:。
(2010江西理数)4. ( )
A. B. C. 2 D. 不存在
【答案】B
【解析】考查等比数列求和与极限知识.解法一:先求和,然后对和取极限。
(2010重庆理数)(1)在等比数列中, ,则公比q的值为
A. 2 B. 3 C. 4 D. 8
解析:
(2010四川理数)(8)已知数列的首项,其前项的和为,且,则
(A)0 (B) (C) 1 (D)2
(2010天津理数)(6)已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为
(A)或5 (B)或5 (C) (D)
【答案】C
【解析】本题主要考查等比数列前n项和公式及等比数列的性质,属于中等题。
显然q1,所以,所以是首项为1,公比为的等比数列, 前5项和.
【温馨提示】在进行等比数列运算时要注意约分,降低幂的次数,同时也要注意基本量法的应用。
(2010广东理数)4. 已知为等比数列,Sn是它的前n项和。若, 且与2的等差中项为,则=
A.35 B.33 C.31 D.29
1.(2010安徽理数)10、设是任意等比数列,它的前项和,前项和与前项和分别为,则下列等式中恒成立的是
A、 B、
C、 D、
【答案】D
【分析】取等比数列,令得代入验算,只有选项D满足。
【方法技巧】对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,若能排除3个选项,剩下唯一正确的就一定正确;若不能完全排除,可以取其他数字验证继续排除.本题也可以首项、公比即项数n表示代入验证得结论.
(2010湖北理数)7、如图,在半径为r 的园内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设为前n个圆的面积之和,则=
A. 2 B. C.4 D.6
(2010福建理数)3.设等差数列的前n项和为,若,,则当取最小值时,n等于
A.6 B.7 C.8 D.9
【答案】A
【解析】设该数列的公差为,则,解得,
所以,所以当时,取最小值。
【命题意图】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力。
(2010辽宁理数)(16)已知数列满足则的最小值为__________.
(2010福建理数)11.在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 .
【答案】
【解析】由题意知,解得,所以通项。
【命题意图】本题考查等比数列的通项公式与前n项和公式的应用,属基础题。
3. (2010江苏卷)8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____
[解析]考查函数的切线方程、数列的通项。
在点(ak,ak2)处的切线方程为:当时,解得,
所以。
(2010江西理数)22. (本小题满分14分)
证明以下命题:
(1) 对任一正整a,都存在整数b,c(b1)。设=+…..+ ,=-+…..+(-1 ,n
(1)若== 1,d=2,q=3,求 的值;
(2)若=1,证明(1-q)-(1+q)=,n;
(3) 若正数n满足2nq,设的两个不同的排列, , 证明。
本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。
所以,
(Ⅲ)证明:
因为所以
若,取i=n
若,取i满足且
【2008年高考试题】
4.(2008·广东卷理2)记等差数列的前项和为,若,,则( )
A.16 B.24 C.36 D.48
答案:D
解析:,,故
7.(2008·广东理2)记等差数列的前项和为,若,,则( )
A.16 B.24 C.36 D.48
答案:D 。
3.(2008·海南宁夏卷理17)已知数列是一个等差数列,且,。
(1)求的通项;
(2)求前n项和的最大值。
解:(Ⅰ)设的公差为,由已知条件,,解出,.
所以.
(Ⅱ).
所以时,取到最大值.
4.(2008·山东理19文20)将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:
a1
a2 a3
a4 a5 a6
a7 a8 a9 a10
……
记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1. Sn为数列{bn}的前n项和,且满足=1=(n≥2).
(Ⅰ)证明数列{}成等差数列,并求数列{bn}的通项公式;
(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项和的和.
(Ⅱ)解:设上表中从第三行起,每行的公比都为q,且q>0.
因为
所以表中第1行至第12行共含有数列{an}的前78项,
故 a82在表中第13行第三列, 因此
又 所以 q=2.
记表中第k(k≥3)行所有项的和为S,
则(k≥3).
点评:本题考查等差数列、等比数列的基本知识,考查数列求和及推理运算能力。
5.(2008·江苏卷19).(Ⅰ)设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当n =4时,求的数值;②求的所有可能值;
(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列.
②当n=5 时, 中同样不可能删去首项或末项.
若删去,则有=,即.故得=6 ;
若删去,则=,即.
化简得3=0,因为d≠0,所以也不能删去;
若删去,则有=,即.故得= 2 .
当n≥6 时,不存在这样的等差数列.事实上,在数列,,,…,,, 中,由于不能删去首项或末项,若删去,则必有=,这与d≠0 矛盾;同样若删去也有=,这与d≠0 矛盾;若删去,…,中任意一个,则必有=,这与d≠0 矛盾.综上所述,n∈{4,5}.
点评:等差等比数列这部分内容主要考查公式的灵活应用,这是高考的热点。
6.(2008·广东卷21)设为实数,是方程的两个实根,数列
满足,,(…).(1)证明:,;(2)求数列的通项公式;
(3)若,,求的前项和.
①当时,此时方程组的解记为
即、分别是公比为、的等比数列,
由等比数列性质可得,,
两式相减,得
,,
,
,即,
②当时,即方程有重根,,
即,得,不妨设,由①可知
,,
即,等式两边同时除以,得,即
数列是以1为公差的等差数列,,
综上所述,
【2007年高考试题】
1.(2007·宁夏、海南理4)已知是等差数列,,其前10项和,
则其公差( )
A. B. C. D.
答案:D
解析: 选D
2.(2007·宁夏、海南理7)已知,,成等差数列,成等比数列,则的最小值是( )
A. B. C. D.
答案:D
解析: 选D。
3.(2007·广东理5) 已知数列{}的前n项和,第k项满足5<<8,则=
A.9 B.8 C.7 D.6
1.(2007·山东理17)设数列满足,.
(Ⅰ)求数列的通项;
(Ⅱ)设,求数列的前项和.
解:(I)
验证时也满足上式,
(II) ,
,
2.(2007·山东理18)
设是公比大于1的等比数列,为数列的前项和.已知,
且构成等差数列.
(1)求数列的等差数列.
(2)令求数列的前项和.
(2)由于
由(1)得
又
是等差数列.
故.
相关文档
- 历届高考数学真题汇编专题7_平面向2021-06-2124页
- 历届高考数学真题汇编专题7_平面向2021-06-2143页
- 历届高考数学真题汇编专题6_不等式2021-06-2136页
- 历届高考数学真题汇编专题14_复数_2021-06-2030页
- 历届高考数学真题汇编专题19_坐标2021-06-195页
- 历届高考数学真题汇编专题5_三角函2021-06-19143页
- 历届高考数学真题汇编专题5_三角函2021-06-1981页
- 历届高考数学真题汇编专题9_直线和2021-06-1913页
- 历届高考数学真题汇编专题2_简易逻2021-06-1713页
- 历届高考数学真题汇编专题19_坐标2021-06-1519页