• 745.50 KB
  • 2021-06-23 发布

2014版高中数学人教版a版选修4-5教学课件:第一讲 一 3 三个正数的算术——几何平均不等式

  • 25页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
3 .三个正数的算术 — 几何平均不等式 a = b = c 算术平均 几何平均 a , b , c 均为正 数 a = b = c a 1 = a 2 = … = a n (1) 不等式的证明方法较多,关键是从式子的结构入手进行分析. (2) 运用三个正数的平均值不等式证明不等式时,仍要注意 “ 一正、二定、三相等 ” ,在解题中,若两次用平均值不等式,则只有在 “ 相等 ” 条件相同时,才能取到等号. 2 .已知 a 1 , a 2 , … , a n 都是正数,且 a 1 a 2 … a n = 1 ,求证: (2 + a 1 )(2 + a 2 )…(2 + a n )≥3 n . (1) 利用三个正数的算术-几何平均不等式定理求最值,可简记为 “ 积定和最小,和定积最大 ” . (2) 应用平均不等式定理,要注意三个条件 “ 即一正二定三相等 ” 同时具备时,方可取得最值,其中定值条件决定着平均不等式应用的可行性,获得定值需要一定的技巧,如:配系数、拆项、分离常数、平方变形等. 答案: D 4 .已知 x , y ∈ R + 且 x 2 y = 4 ,试求 x + y 的最小值及达到最 小值时 x 、 y 的值. 5 .已知长方体的表面积为定值 S ,试问这个长方体的长、 宽、高各是多少时,它的体积最大,求出这个最大值.

相关文档