• 1.28 MB
  • 2021-06-23 发布

2017-2018学年河北省衡水中学滁州分校高二下学期开学考试数学理试题(Word版)

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
启用前绝密 河北省衡水中学滁州分校2017-2018学年下学期开学考试 高二(理科)数学 注意事项:‎ ‎1.你现在拿到的这份试卷是满分150分,作答时间为120分钟 ‎ ‎2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息 ‎3.请将答案正确填写在答题卡上 第I卷(选择题60分)‎ 一、选择题(本大题共12个小题,每小题5分,共60分。) ‎ ‎1.已知为正数,则“”是“ ”的 ( )‎ A. 充分不必要条件 B. 必要不充分条件 ‎ C. 充要条件 D. 既不充分也不必要条件 ‎2. 由命题“存在,使”是假命题,得的取值范围是,则实数的值是( )‎ A. 2 B. C. 1 D. ‎ ‎3. 如图,空间四边形中,点分别在上, , ,则 ( )‎ A. B. ‎ C. D. ‎ ‎4. 设点为双曲线(, )上一点, 分别是左右焦点, 是的内心,若, , 的面积满足,则双曲线的离心率为( )‎ A. 2 B. ‎ C. 4 D. ‎ ‎5.如图,面,B为AC的中点, ,且P到直线BD的距离为则的最大值为( ) ‎ A. 30° B. 60°‎ C. 90° D. 120°‎ ‎6.如图,在长方体中,点分别是棱上的动点, ,直线与平面所成的角为,则的面积的最小值是( )‎ A. B. C. D. ‎ ‎7.如图,60°的二面角的棱上有两点,直线分别在这个二面角的两个半平面内,且都垂直于.已知,则的长为(  )‎ A. B. 7 ‎ C. D. 9‎ ‎8.已知是同一球面上的四个点,其中是正三角形, 平面, ,则该球的表面积为( )‎ A. B. C. D. ‎ ‎9.若直线与曲线有交点,则( )‎ A. 有最大值,最小值 B. 有最大值,最小值 C. 有最大值,最小值 D. 有最大值,最小值 ‎10.在四面体中, 分别是的中点,若,则( )‎ A. B. C. 1 D. 2‎ ‎11.若直线始终平分圆的周长,则的最小值为 A. 1 B. 5 C. D. ‎ ‎12.如图,在长方体中, , ,点在棱上,且,则当的面积最小时,棱的长为 A. B. C. D. ‎ 第II卷(非选择题 90分)‎ 二、填空题(本大题共4个小题,每小题5分,共20分。) ‎ ‎13. 已知是双曲线 的左焦点,若点,以线段的长为直径的圆与双曲线左,右两支在轴上方的交点分别为,则______.‎ ‎14. 如图所示,四棱锥的底面为矩形, , ,且,记二面角的平面角为,若,则的取值范围是___________‎ ‎15.设抛物线的焦点为,过点的直线与抛物线相交于两点,与抛物线的准线相交于点, ,则与的面积之__________.‎ ‎16. 给出如下命題:‎ ‎①命题 “在中,若,则” 的逆命題为真命题;‎ ‎②若动点到两定点的距离之和为,则动点的轨迹为线段;‎ ‎③若为假命题,则都是假命題;‎ ‎④设,则“”是“”的必要不充分条件 ‎⑤若实数成等比数列,则圆锥曲线的离心率为; ‎ 其中所有正确命题的序号是_________.‎ 三、解答题(本大题共6个小题,70分。)‎ ‎17. (本题10分)如图,在四棱锥中, 平面, ,.‎ ‎(1)求证: ;‎ ‎(2)求多面体的体积.‎ ‎18. (本题12分)已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.‎ ‎(1)若的坐标为,求的值;‎ ‎(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.‎ ‎19. (本题12分)在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,‎ ‎(Ⅰ)求证:A1C1⊥BC1;‎ ‎(Ⅱ)求证:AC1∥平面CDB1.‎ ‎20. (本题12分)如图,直线与圆 且与椭圆相交于两点.‎ ‎(1)若直线恰好经过椭圆的左顶点,求弦长 ‎(2)设直线的斜率分别为,判断是否为定值,并说明理由 ‎(3)求,面积的最小值.‎ ‎21. (本题12分)如图,已知抛物线的焦点为,过的直线交抛物线于两点,过作准线的垂线,垂足为为原点.‎ ‎(1)求证: 三点共线;‎ ‎(2)求的大小.‎ ‎22. (本题12分)如图,在四棱锥中,,,,平面底面,.和分别是和的中点,求证:‎ ‎(Ⅰ)底面;‎ ‎(Ⅱ)平面;‎ ‎(Ⅲ)平面平面.‎ 河北省衡水中学滁州分校2017-2018学年下学期开学考试 高二(理科)数学 参考答案解析 一、选择题 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ C C ‎ B ‎ A B ‎ B C A C ‎ C ‎ A ‎ A ‎ 二、填空题 ‎13 .‎ ‎【解析】.由于F为双曲线的左焦点,在x轴上F点的右侧有一点A,‎ 以FA为直径的圆与双曲线左、右两支在x轴上方的交点分别为M,N,‎ 不妨设A为椭圆的右焦点,则F(﹣5,0),A(5,0),|FN|﹣|NA|=8,‎ 由双曲线的对称性得到|FM|=|NA|,‎ ‎∴|FN|﹣|FM|=8‎ 则=‎ ‎14. ‎ ‎【解析】由题意易得: ,∴△CPA≌△CBA,‎ 过P作PO⊥AC于O点,连OB,则OB⊥AC,‎ ‎∴∠POB为二面角的平面角 ‎,‎ 即,又 ‎∴的取值范围是 ‎15.‎ ‎【解析】‎ 由题意可得抛物线的焦点的坐标为,准线方程为。‎ 如图,设,过A,B分别向抛物线的准线作垂线,垂足分别为E,N,则 ‎,解得。‎ 把代入抛物线,解得。‎ ‎∴直线AB经过点与点,‎ 故直线AB的方程为,代入抛物线方程解得。‎ ‎∴。‎ 在中, ,‎ ‎∴‎ ‎∴。答案: ‎ ‎16. .①②④‎ ‎【解析】①命题“在中,若,则”的逆命题为“在中,若,则”,是真命题;②若动点到两定点的距离之和为,则动点的轨迹为线段,正确,原因是只有线段上的点到定点的距离之和为;③若为假命题,则都是假命题,错误,原因是只要中有一个是假命题,就有为假命题;④设,由能得到,反之由不一定有.则“”是“”的必要不充分条件;⑤若实数 成等比数列,则,.若,圆锥曲线表示焦点在轴上的双曲线,此时,,,圆锥曲线的离心率为,命题⑤错误.因此,本题正确答案是①②④.‎ 三、简答题 ‎17.‎ ‎(I) 面面 面 又面 ‎(II)解:连接 平面 为直角三角形且为直角.‎ ‎18. (1)由抛物线的焦点到准线的距离为,得,‎ 则抛物线的方程为.‎ 设切线的方程为,代入得,‎ 由得,‎ 当时,点的横坐标为,‎ 则,‎ 当时,同理可得.‎ 综上得。‎ ‎(2)由(1)知, ,‎ 所以以线段为直径的圆为圆,‎ 根据对称性,只要探讨斜率为正数的直线即可,‎ 因为为直线与圆的切点,‎ 所以, ,‎ 所以,‎ 所以,‎ 所以直线的方程为,‎ 由消去整理得,‎ 因为直线与圆相交,所以。‎ 设,则,‎ 所以,‎ 所以,‎ 设,因为,所以,‎ 所以,‎ 所以.‎ ‎19. ‎ 证明(法一: 故有,A. 法二: ;由直三棱柱;;平面; ‎ 平面,平面, 平面,‎ ‎(连接相交于点O,连OD,易知// , 平面 , 平面,故//平面.‎ ‎20.‎ ‎(1)由题意直线斜率存在,设直线 因为直线与圆相切,‎ 所以 解得 当时,由解得,所以 当时,同理 所以。‎ ‎(2)(ⅰ)当直线的斜率不存在时,得;‎ ‎(ⅱ)当的斜率存在时,设直线 ‎ 因为直线与圆相切,‎ 所以 整理得所以①,‎ 由消去y整理得,‎ 由直线与圆相交得 设 则 ,②‎ 所以③,‎ 将①②代入③式得 综上可得 ‎ ‎(3)由(2)知 记直线与圆的切点为 设 所以,‎ 则 所以当时, .‎ ‎21.‎ ‎(1)设直线 ‎ 由消去y整理得 ‎ 设 则 因为 ‎ 所以,‎ 所以,‎ 又线段有公共点, ‎ 所以三点共线. ‎ ‎(2)因为 所以,‎ 所以,‎ 所以 ‎22.‎ ‎(Ⅰ)因为平面底面,且垂直于这两个平面的交线, ‎ 所以底面.‎ ‎(Ⅱ)因为,,是的中点,‎ 所以,且.‎ 所以为平行四边形.‎ 所以,.‎ 又因为平面,平面,‎ 所以平面.‎ ‎(Ⅲ)因为,并且为平行四边形,‎ 所以,.‎ 由(Ⅰ)知底面,‎ 所以,‎ 所以平面.‎ 所以.‎ 因为和分别是和的中点,‎ 所以.‎ 所以.‎ 所以平面.‎ 所以平面平面.‎ ‎ ‎