- 1.43 MB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020年高三二轮精品
专题20 三角形中的不等和最值问题
.练高考
1、【2019年高考北京卷】如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为
A.4β+4cosβ B.4β+4sinβ
C.2β+2cosβ D.2β+2sinβ
【答案】B
【解析】设圆心为O,如图1,连接OA,OB,AB,OP,则,所以,因为,且都已确定,所以当最大时,阴影部分面积最大.观察图象可知,当P为弧AB的中点时(如图2),阴影部分的面积S取最大值,此时∠BOP=∠AOP=π−β,面积S的最大值为=
4β+S△POB+ S△POA=4β+|OP||OB|sin(π−β)+|OP||OA|sin(π−β)=4β+2sinβ+2sinβ=4β+4 sinβ,故选B.
【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示.
2、【2019年高考全国Ⅱ卷】已知是椭圆的两个焦点,P为C上一点,O为坐标原点.
(1)若为等边三角形,求C的离心率;
(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.
【答案】(1);(2),a的取值范围为.
【解析】(1)连结,由为等边三角形可知在中,,,,于是,故的离心率是.
(2)由题意可知,满足条件的点存在.当且仅当,,,即,① ,② ,③
由②③及得,又由①知,故.由②③得,所以,从而故. 当,时,存在满足条件的点P.
所以,的取值范围为.
【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.
3.【2019年高考全国Ⅲ卷】的内角A、B、C的对边分别为a、b、c.已知.
(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.
【答案】(1)B=60°;(2).
【解析】(1)由题设及正弦定理得.因为sinA0,所以.
由,可得,故.
因为,故,因此B=60°.
(2)由题设及(1)知△ABC的面积.由正弦定理得.
由于△ABC为锐角三角形,故0°