• 62.00 KB
  • 2021-06-24 发布

2016届高考数学(理)大一轮复习达标训练试题:课时跟踪检测(六十四) 随机事件的概率

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
课时跟踪检测(六十四) 随机事件的概率 一、选择题 ‎1.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是(  )‎ A.A∪B与C是互斥事件,也是对立事件 B.B∪C与D是互斥事件,也是对立事件 C.A∪C与B∪D是互斥事件,但不是对立事件 D.A与B∪C∪D是互斥事件,也是对立事件 ‎2.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是(  )‎ A.    B.     C.      D.1‎ ‎3.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:‎ 卡片号码 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ 取到次数 ‎13‎ ‎8‎ ‎5‎ ‎7‎ ‎6‎ ‎13‎ ‎18‎ ‎10‎ ‎11‎ ‎9‎ 则取到号码为奇数的卡片的频率是(  )‎ A.0.53 B.‎0.5 ‎ C.0.47 D.0.37‎ ‎4.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:‎ ‎162,153,148,154,165,168,172,171,173,150,‎ ‎151,152,160,165,164,179,149,158,159,175.‎ 根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在‎155.5 cm~‎170.5 cm之间的概率约为(  )‎ A. B. C. D. ‎5.已知甲、乙两人下棋,和棋的概率为,乙胜的概率为,则甲胜的概率和甲不输的概率分别为(  )‎ A., B., C., D., ‎6.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=‎4a-5,则实数a的取值范围是(  )‎ A. B. C. D. 二、填空题 ‎7.据统计,某食品企业在一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1,则该企业在一个月内被消费者投诉不超过1次的概率为________.‎ ‎8.(2015·潍坊模拟)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m”为事件A,则P(A)最大时,m=________.‎ ‎9.某城市2014年的空气质量状况如下表所示:‎ 污染指数T ‎30‎ ‎60‎ ‎100‎ ‎110‎ ‎130‎ ‎140‎ 概率P 其中污染指数T≤50时,空气质量为优;500,y>0,则x+y的最小值为________.‎ 三、解答题 ‎11.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.‎ ‎(1)求取得的两个球颜色相同的概率;‎ ‎(2)求取得的两个球颜色不相同的概率.‎ ‎12.黄种人人群中各种血型的人数所占的比例见下表:‎ 血型 A B AB O 该血型的人数所占的比例 ‎28%‎ ‎29%‎ ‎8%‎ ‎35%‎ 已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若他因病需要输血,问:‎ ‎(1)任找一个人,其血可以输给小明的概率是多少?‎ ‎(2)任找一个人,其血不能输给小明的概率是多少?‎ 答案 ‎1.选D 由于A,B,C,D彼此互斥,且A∪B∪C∪D是一个必然事件,故其事件的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.‎ ‎2.选C 设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.所以P(C)=P(A)+P(B)=+=.即任意取出2粒恰好是同一色的概率为.‎ ‎3.选A 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为=0.53.故选A.‎ ‎4.选A 从已知数据可以看出,在随机抽取的这20位学生中,身高在‎155.5 cm~‎ ‎170.5 cm之间的学生有8人,频率为,故可估计在该校高二年级的所有学生中任抽一人,其身高在‎155.5 cm~‎170.5 cm之间的概率约为.‎ ‎5.选C “甲胜”是“和棋或乙胜”的对立事件,所以甲胜的概率为1--=.‎ 设“甲不输”为事件A,则A可看作是“甲胜”与“和棋”这两个互斥事件的和事件,所以P(A)=+=.或设“甲不输”为事件A,则A可看作是“乙胜”的对立事件,所以P(A)=1-=.‎ ‎6.选D 由题意可知⇒⇒⇒