- 1.14 MB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第6讲 空间向量及其运算
一、知识梳理
1.空间向量的有关定理
(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在唯一的实数λ,使得a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc.其中{a,b,c}叫做空间的一个基底.
2.两个向量的数量积(与平面向量基本相同)
(1)两向量的夹角:已知两个非零向量a,b,在空间中任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉.通常规定0≤〈a,b〉≤π.若〈a,b〉=,则称向量a,b互相垂直,记作a⊥b.
(2)两向量的数量积
两个非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.
(3)向量的数量积的性质
①a·e=|a|cos〈a,e〉(其中e为单位向量);
②a⊥b⇔a·b=0;
③|a|2=a·a=a2;
④|a·b|≤|a||b|.
(4)向量的数量积满足如下运算律
①(λa)·b=λ(a·b);
②a·b=b·a(交换律);
③a·(b+c)=a·b+a·c(分配律).
3.空间向量的坐标运算
(1)设a=(a1,a2,a3),b=(b1,b2,b3).
a+b=(a1+b1,a2+b2,a3+b3),
a-b=(a1-b1,a2-b2,a3-b3),
λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3,
a⊥b⇔a1b1+a2b2+a3b3=0,
a∥b⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),
cos〈a,b〉== .
(2)设A(x1,y1,z1),B(x2,y2,z2),
则=-=(x2-x1,y2-y1,z2-z1).
4.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称为直线l的方向向量,与平行的任意非零向量也是直线l的方向向量,显然一条直线的方向向量可以有无数个.
(2)平面的法向量
①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.
②确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为
5.空间位置关系的向量表示
位置关系
向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2
n1∥n2⇔n1=λn2
l1⊥l2
n1⊥n2⇔n1·n2=0
直线l的方向向量为n,平面α的法向量为m
l∥α
n⊥m⇔n·m=0
l⊥α
n∥m⇔n=λm
平面α,β的法向量分别为n,m
α∥β
n∥m⇔n=λm
α⊥β
n⊥m⇔n·m=0
常用结论
1.向量三点共线定理
在平面中A,B,C三点共线的充要条件是:=x+y(其中x+y=1),O为平面内任意一点.
2.向量四点共面定理
在空间中P,A,B,C四点共面的充要条件是:=x+y+z(其中x+y+z=1),O为空间任意一点.
二、教材衍化
1.如图所示,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则=________(用a,b,c表示).
解析:=+=+(-)=c+(b-a)=-a+b+c.
答案:-a+b+c
2.正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为________.
解析:||2=2=(++)2
=2+2+2+2(·+·+·)
=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)
=2,
所以||=,所以EF的长为.
答案:
3.如图所示,
在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.
解析:以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z
轴建立空间直角坐标系,设DA=2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),所以=(-2,0,1),=(1,0,2),·=-2+0+2=0,所以AM⊥ON.
答案:垂直
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)空间中任意两非零向量a,b共面.( )
(2)在向量的数量积运算中(a·b)·c=a·(b·c).( )
(3)对于非零向量b,由a·b=b·c,则a=c.( )
(4)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.( )
(5)两向量夹角的范围与两异面直线所成角的范围相同.( )
(6)若A,B,C,D是空间任意四点,则有+++=0.( )
答案:(1)√ (2)× (3)× (4)× (5)× (6)√
二、易错纠偏
在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是( )
A.垂直 B.平行
C.异面 D.相交但不垂直
解析:选B.由题意得,=(-3,-3,3),=(1,1,-1),所以=-3,所以与共线,又AB与CD没有公共点,所以AB∥CD.
空间向量的线性运算(自主练透)
1.在空间四边形ABCD中,若=(-3,5,2),=(-7,-1,-4),点E,F分别为线段BC,AD的中点,则的坐标为( )
A.(2,3,3) B.(-2,-3,-3)
C.(5,-2,1) D.(-5,2,-1)
解析:选B.因为点E,F分别为线段BC,AD的中点,O为坐标原点,所以=-
,=(+),=(+).
所以=(+)-(+)=(+)
=[(3,-5,-2)+(-7,-1,-4)]
=(-4,-6,-6)=(-2,-3,-3).
2.在三棱锥OABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量,,表示(1);(2).
解:(1)=+
=+
=+(-)
=+[(+)-]
=-++.
(2)=+
=-++
=++.
3.如图所示,在平行六面体ABCDA1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);(2);(3)+.
解:(1)因为P是C1D1的中点,
所以=++=a++
=a+c+=a+c+b.
(2)因为N是BC的中点,
所以=++=-a+b+
=-a+b+=-a+b+c.
(3)因为M是AA1的中点,
所以=+=+
=-a+
=a+b+c,
又=+=+
=+=c+a,
所以+=+
=a+b+c.
用已知向量表示未知向量的解题策略
(1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.
(2)要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.
(3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.
共线、共面向量定理的应用(师生共研)
如图所示,已知斜三棱柱ABCA1B1C1,点M,N分别在AC1和BC上,且满足=k,=k(0≤k≤1).
(1)向量是否与向量,共面?
(2)直线MN是否与平面ABB1A1平行?
【解】 (1)因为=k,=k,
所以=++
=k++k
=k(+)+
=k(+)+
=k+
=-k=-k(+)
=(1-k)-k,
所以由共面向量定理知向量与向量,共面.
(2)当k=0时,点M,A重合,点N,B重合,
MN在平面ABB1A1内,当0