• 562.00 KB
  • 2021-06-24 发布

2018届高三数学一轮复习: 第2章 第7节 函数的图象

  • 11页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第七节 函数的图象 ‎[考纲传真] 会运用基本初等函数的图象分析函数的性质.‎ ‎1.利用描点法作函数的图象 方法步骤:(1)确定函数的定义域;‎ ‎(2)化简函数的解析式;‎ ‎(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);‎ ‎(4)描点连线.‎ ‎2.利用图象变换法作函数的图象 ‎(1)平移变换 ‎(2)对称变换 ‎①y=f(x)的图象y=-f(x)的图象;‎ ‎②y=f(x)的图象y=f(-x)的图象;‎ ‎③y=f(x)的图象y=-f(-x)的图象;‎ ‎④y=ax(a>0且a≠1)的图象y=logax(a>0且a≠1)的图象.‎ ‎(3)伸缩变换 ‎①y=f(x)的图象 y=f(ax)的图象;‎ ‎②y=f(x)的图象 y=af(x)的图象.‎ ‎(4)翻转变换 ‎①y=f(x)的图象y=|f(x)|的图象;‎ ‎②y=f(x)的图象y=f(|x|)的图象.‎ ‎1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)‎ ‎(1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.(  )‎ ‎(2)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.(  )‎ ‎(3)当x∈(0,+∞)时,函数y=f(|x|)的图象与y=|f(x)|的图象相同.(  )‎ ‎(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.(  )‎ ‎[答案] (1)× (2)× (3)× (4)√‎ ‎2.(教材改编)甲、乙二人同时从A地赶往B地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A地的距离s与所用时间t的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是(  )‎ ‎①       ②      ③      ④‎ 图271‎ A.甲是图①,乙是图②  B.甲是图①,乙是图④‎ C.甲是图③,乙是图② D.甲是图③,乙是图④‎ B [设甲骑车速度为V甲骑,甲跑步速度为V甲跑,乙骑车速度为V乙骑,乙跑步速度为V乙跑,依题意V甲骑>V乙骑>V乙跑>V甲跑,故选B.]‎ ‎3.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=(  )‎ A.ex+1 B.ex-1‎ C.e-x+1 D.e-x-1‎ D [依题意,与曲线y=ex关于y轴对称的曲线是y=e-x,于是f(x)相当于y=e-x向左平移1个单位的结果,∴f(x)=e-(x+1)=e-x-1.]‎ ‎4.(2016·浙江高考)函数y=sin x2的图象是(  )‎ D [∵y=sin(-x)2=sin x2,‎ ‎∴函数为偶函数,可排除A项和C项;当x=时,sin x2=sin ≠1,排除B项,故选D.]‎ ‎5.若关于x的方程|x|=a-x只有一个解,则实数a的取值范围是________. ‎ ‎【导学号:01772055】‎ ‎ (0,+∞) [在同一个坐标系中画出函数y=|x|与y=a-x的图象,如图所示.由图象知当a>0时,方程|x|=a-x只有一个解.]‎ 作函数的图象 ‎ 作出下列函数的图象:‎ ‎(1)y=|x|;(2)y=|log2(x+1)|;‎ ‎(3)y=;(4)y=x2-2|x|-1.‎ ‎[解] (1)先作出y=x的图象,保留y=x图象中x≥0的部分,再作出y=x的图象中x>0部分关于y轴的对称部分,即得y=|x|的图象,如图①实线部分.3分 ‎①           ②‎ ‎(2)将函数y=log2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1)|的图象,如图②.6分 ‎(3)∵y=2+,故函数图象可由y=图象向右平移1个单位,再向上平移2个单位得到,如图③.9分 ‎③           ④‎ ‎(4)∵y=且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.12分 ‎[规律方法] 画函数图象的一般方法 ‎(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;‎ ‎(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出.‎ 易错警示:注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.‎ ‎[变式训练1] 分别画出下列函数的图象:‎ ‎(1)y=|lg x|;(2)y=sin|x|.‎ ‎[解] (1)∵y=|lg x|= ‎∴函数y=|lg x|的图象,如图①.6分 ‎(2)当x≥0时,y=sin|x|与y=sin x的图象完全相同,又y=sin|x|为偶函数,图象关于y轴对称,其图象如图②.12分 识图与辨图 ‎ (1)(2016·全国卷Ⅰ)函数y=2x2-e|x|在[-2,2]的图象大致为(  )‎ 图272‎ ‎(2)(2015·全国卷Ⅱ)如图272,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为(  )‎ A     B     C     D ‎(1)D (2)B [(1)∵f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-ex,则g′(x)=4x-ex.又g′(0)<0,g′(2)>0,∴g(x)在(0,2)内至少存在一个极值点,∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.‎ ‎(2)当点P沿着边BC运动,即0≤x≤时,‎ 在Rt△POB中,|PB|=|OB|tan∠POB=tan x,‎ 在Rt△PAB中,|PA|==,‎ 则f(x)=|PA|+|PB|=+tan x,它不是关于x的一次函数,图象不是线段,故排除A和C;‎ 当点P与点C重合,即x=时,由上得f=+tan=+1,又当点P 与边CD的中点重合,即x=时,△PAO与△PBO是全等的腰长为1的等腰直角三角形,故f=|PA|+|PB|=+=2,知f<f,故又可排除D.综上,选B.]‎ ‎[规律方法] 函数图象的识辨可从以下方面入手:‎ ‎(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;‎ ‎(2)从函数的单调性,判断图象的变化趋势;‎ ‎(3)从函数的奇偶性,判断图象的对称性;‎ ‎(4)从函数的周期性,判断图象的循环往复;‎ ‎(5)从函数的特征点,排除不合要求的图象.‎ 图273‎ ‎[变式训练2] (1)已知函数f(x)的图象如图273所示,则f(x)的解析式可以是(  )‎ A.f(x)= B.f(x)= C.f(x)=-1‎ D.f(x)=x- ‎(2)(2016·河南平顶山二模)函数y=a+sin bx(b>0且b≠1)的图象如图274所示,那么函数y=logb(x-a)的图象可能是(  )‎ 图274‎ ‎(1)A (2)C [(1)由函数图象可知,函数f(x)为奇函数,应排除B,C.若函数为f(x)=x-,则x→+∞时,f(x)→+∞,排除D,故选A.‎ ‎(2)由题图可得a>1,且最小正周期T=<π,所以b>2,则y=logb(x-a)是增函数,排除A和B;当x=2时,y=logb(2-a)<0,排除D,故选C.]‎ 函数图象的应用 ‎☞角度1 研究函数的性质 ‎ 已知函数f(x)=x|x|-2x,则下列结论正确的是(  )‎ A.f(x)是偶函数,递增区间是(0,+∞)‎ B.f(x)是偶函数,递减区间是(-∞,1)‎ C.f(x)是奇函数,递减区间是(-1,1)‎ D.f(x)是奇函数,递增区间是(-∞,0)‎ C [将函数f(x)=x|x|-2x去掉绝对值得f(x)=画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.]‎ ‎☞角度2 确定函数零点的个数 ‎ 已知f(x)=则函数y=‎2f2(x)-‎3f(x)+1的零点个数是________.‎ ‎5 [方程‎2f2(x)-‎3f(x)+1=0的解为f(x)=或1.作出y=f(x)的图象,‎ 由图象知零点的个数为5.]‎ ‎☞角度3 求参数的值或取值范围 ‎ (2016·浙江杭州五校联盟一诊)若直角坐标平面内两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称(P,Q)是函数y=f(x)的一个“伙伴点组”(点组(P,Q)与(Q,P)看作同一个“伙伴点组”).已知函数f(x)=有两个“伙伴点组”,则实数k的取值范围是(  )‎ A.(-∞,0)      B.(0,1)‎ C. D.(0,+∞)‎ B [根据题意可知,“伙伴点组”的点满足:‎ 都在函数图象上,且关于坐标原点对称.‎ 可作出函数y=-ln(-x)(x<0)关于原点对称的函数y=ln x(x>0)的图象,‎ 使它与直线y=kx-1(x>0)的交点个数为2即可.‎ 当直线y=kx-1与y=ln x的图象相切时,设切点为(m,ln m),又y=ln x的导数为y′=,‎ 即km-1=ln m,k=,解得m=1,k=1,‎ 可得函数y=ln x(x>0)的图象过(0,-1)点的切线的斜率为1,‎ 结合图象可知k∈(0,1)时两函数图象有两个交点.故选B.]‎ ‎☞角度4 求不等式的解集 ‎ 函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图275所示,那么不等式<0的解集为________.‎ 图275‎ ∪ [在上,y=cos x>0,在上,y=cos x<0.‎ 由f(x)的图象知在上<0,‎ 因为f(x)为偶函数,y=cos x也是偶函数,‎ 所以y=为偶函数,‎ 所以<0的解集为∪.]‎ ‎[规律方法] 函数图象应用的常见题型与求解方法 ‎(1)研究函数性质:‎ ‎①‎ 根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值.‎ ‎②从图象的对称性,分析函数的奇偶性.‎ ‎③从图象的走向趋势,分析函数的单调性、周期性.‎ ‎④从图象与x轴的交点情况,分析函数的零点等.‎ ‎(2)研究方程根的个数或由方程根的个数确定参数的值(范围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.‎ ‎(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.‎ ‎[思想与方法]‎ ‎1.识图:对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.‎ ‎2.用图:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f(x)=g(x)的解的个数,求不等式的解集等.‎ ‎[易错与防范]‎ ‎1.图象变换是针对自变量x而言的,如从f(-2x)的图象到f(-2x+1)的图象是向右平移个单位,先作如下变形f(-2x+1)=f,可避免出错.‎ ‎2.明确一个函数的图象关于y轴对称与两个函数的图象关于y轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.‎ ‎ 3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.‎

相关文档