- 134.50 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010~2014年高考真题备选题库
第8章 平面解析几何
第6节 双曲线
1.(2014天津,5分)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:选A 由题意可知,双曲线的其中一条渐近线y=x与直线y=2x+10平行,所以=2且左焦点为(-5,0),所以a2+b2=c2=25,解得a2=5,b2=20,故双曲线方程为-=1.
答案:A
2.(2014北京,5分)设双曲线C经过点(2,2),且与-x2=1具有相同渐近线,则C的方程为________;渐近线方程为________.
解析:∵与双曲线-x2=1有相同渐近线的双曲线方程为-x2=k.将点(2,2)代入,得k=-3,
∴双曲线C的方程为-=1,
其渐近线方程为-=0,即y=±2x.
答案:-=1 y=±2x
3.(2014新课标全国卷Ⅰ,5分)已知F是双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )
A. B.3
C.m D.3m
解析:双曲线方程为-=1,焦点F到一条渐近线的距离为b=.选A.
答案:A
3.(2014山东,5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为( )
A.x±y=0 B.x±y=0
C.x±2y=0 D.2x±y=0
解析:椭圆C1的离心率为,双曲线C2的离心率为,所以·=,所以a4-b4=a4,即a4=4b4,所以a=b,所以双曲线C2的渐近线方程是y=± x,即x±y=0.
答案:A
4.(2014广东,5分)若实数k满足0<k<9,则曲线-=1与曲线-=1的( )
A.离心率相等
B.虚半轴长相等
C.实半轴长相等
D.焦距相等
解析:由00,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,则该双曲线的离心率为( )
A. B.
C. D.3
解析:选B 由双曲线的定义得||PF1|-|PF2||=2a,又|PF1|+|PF2|=3b,所以(|PF1|+|PF2|)2-(|PF1|-|PF2|)2=9b2-4a2,即4|PF1|·|PF2|=9b2-4a2,又4|PF1|·|PF2|=9ab,因此9b2-4a2=9ab,即92--4=0,则=0,解得=,则双曲线的离心率e==.
答案:B
6.(2014湖北,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )
A. B.
C.3 D.2
解析:假定焦点在x轴上,点P在第一象限,F1,F2分别为左、右焦点.设椭圆的方程为+=1(a>b>0),双曲线的方程为-=1(m>0,n>0),它们的离心率分别为e1,e2,由|PF1|-|PF2|=2m,|PF1|+|PF2|=2a,得|PF1|=a+m,|PF2|=a-m,在△PF1F2中,4c2=(a+m)2+(a-m)2-2(a+m)(a-m)cos⇒a2+3m2=4c2⇒2+32=4,则≥2⇒+=+≤,当且仅当a=3m时,等号成立,故选A.
答案:A
7.(2013广东,5分)已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:本题考查双曲线的方程,考查考生的运算能力.由题意可知c=3,a=2,b= = =,故双曲线的方程为-=1.
答案:B
8.(2013湖北,5分)已知0<θ<,则双曲线C1:-=1与C2:-=1的( )
A.实轴长相等 B.虚轴长相等
C.焦距相等 D.离心率相等
解析:本题考查三角函数、双曲线等知识,意在考查考生对双曲线知识的掌握情况,会求实轴、虚轴、焦距和离心率的值,掌握三角函数的重要公式是求解本题的基础.双曲线C1的离心率e1== = =,双曲线C2的离心率e2== = =
= =,所以e1=e2,而双曲线C1的实轴长为2a1=2cos θ,虚轴长为2b1=2sin θ,焦距为2c1=2 =2,双曲线C2的实轴长为2a2=2sin θ,虚轴长为2b2=2sin θsin θ,焦距为2c2=2 =2 =2tan θ,所以A,B,C均不对,故选D.
答案:D
9.(2013福建,5分)双曲线-y2=1的顶点到其渐近线的距离等于( )
A. B.
C. D.
解析:本题考查双曲线的图象与性质,点到直线的距离等基础知识,意在考查考生的数形结合能力、转化和化归能力以及运算求解能力.双曲线-y2=1的渐近线方程为y=±,即x±2y=0,所以双曲线的顶点(±2,0)到其渐近线距离为=.
答案:C
10.(2013浙江,5分)如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是( )
A. B.
C. D.
解析:本题考查椭圆、双曲线的定义,几何图形和标准方程,简单几何性质,考查转化与化归思想、数形结合思想、函数与方程思想以及运算求解能力.设双曲线方程为-=1(a>0,b>0)①,点A的坐标为(x0,y0).
由题意得a2+b2=3=c2②,则|OA|=c=,
所以解得x=,y=,又点A在双曲线上,代入①得,b2-a2=a2b2③,联立②③解得a=,所以e==,故选D.
答案:D
11.(2013北京,5分)若双曲线-=1 的离心率为,则其渐近线方程为( )
A. y=±2x B.y=±x
C. y=±x D. y=±x
解析:本题考查双曲线的方程和简单几何性质,意在考查考生的运算求解能力.在双曲线中离心率e== =,可得=,故所求的双曲线的渐近线方程是y=±x.
答案:B
12.(2013陕西,5分)双曲线-=1的离心率为,则m等于________.
解析:本题考查双曲线的几何性质和方程思想的具体应用.
⇒=⇒m=9.
答案:9
13.(2013江苏,5分)双曲线-=1的两条渐近线的方程为________.
解析:本题考查双曲线的几何性质,意在考查学生的运算能力.
令-=0,解得y=±x.
答案:y=±x
14.(2013湖南,5分)设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点,P是C上一点.若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为________.
解析:本小题主要考查双曲线的定义及其几何性质和余弦定理,考查数形结合思想与运算求解能力,属中档题.依题意及双曲线的对称性,不妨设F1,F2分别为双曲线的左、右焦点,点P在双曲线的右支上,由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,求得|PF1|=4a,|PF2|=2a.而|F1F2|=2c,所以在△PF1F2中由余弦定理,得|PF2|2=|PF1|2+|F1F2|2-2|PF1|·|F1F2|·cos∠PF1F2,所以4a2=16a2+4c2-2·4a·2c·cos 30°,即3a2-2ac+c2=0,所以a-c=0,故双曲线C的离心率为.
答案:
15.(2011山东,5分)已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:圆心的坐标是(3,0),圆的半径是2,双曲线的渐近线方程是bx±ay=0,根据已知得=2,即=2,解得b=2,则a2=5,故所求的双曲线方程是-=1.
答案:A
16.(2011安徽,5分)双曲线2x2-y2=8的实轴长是( )
A.2 B.2
C.4 D.4
解析:双曲线方程可变形为-=1,所以a2=4,a=2,2a=4.
答案:C
17.(2012新课标全国,5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )
A. B.2
C.4 D.8
解析:抛物线y2=16x的准线方程是x=-4,所以点A(-4,2)在等轴双曲线C:x2-y2=a2(a>0)上,将点A的坐标代入得a=2,所以C的实轴长为4.
答案:C
18.(2012浙江,5分)如图,F1,F2分别是双曲线C:-=1(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是( )
A. B.
C. D.
解析:不妨设c=1,则直线PQ:y=bx+b,两渐近线为y=±x,
因此有交点P(-,),Q(,),设PQ的中点为N,则点N的坐标为(,),
因为线段PQ的垂直平分线与x轴交于点M,|MF2|=|F1F2|,所以点M的坐标为(3,0),
因此有kMN==-,所以3-4a2=b2=1-a2,
所以a2=,所以e=.
答案:B
19.(2011湖南,5分)设双曲线-=1(a>0)的渐近线方程为3x±2y=0,则a的值为( )
A.4 B.3
C.2 D.1
解析:双曲线方程-=1的渐近线方程为3x±ay=0,与已知方程比较系数得a=2.
答案:C
20.(2012湖北,5分)如图,双曲线-=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则
(1)双曲线的离心率e=________;
(2)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=________.
解析:由题意可得a=bc,∴a4-3a2c2+c4=0,∴e4-3e2+1=0,∴e2=,∴e=.
设sin θ=,cos θ=,
====e2-=.
答案:
21.(2011辽宁,5分)已知点(2,3)在双曲线C:-=1(a>0,b>0)上,C的焦距为4,则它的离心率为________.
解析:根据点(2,3)在双曲线上,可以很容易建立一个关于a,b的等式,即-=1,考虑到焦距为4,这也是一个关于c的等式,2c=4,即c=2.再有双曲线自身的一个等式a2+b2=c2,这样,三个方程,三个未知量,可以解出a=1,b=,c=2,所以,离心率e=2.
答案:2