- 802.50 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题01 集合与简单逻辑
集合知识一般以一个选择题的形式出现,其中以集合知识为载体,集合与不等式、解析几何知识相结合是考查的重点,难度为中、低档;对常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,考查充要条件或命题的真假判断等,难度一般不大.
1.集合的概念、运算和性质
(1)集合的表示法:列举法,描述法,图示法.
(2)集合的运算:
①交集:A∩B={x|x∈A,且x∈B}.
②并集:A∪B={x|x∈A,或x∈B}.
③补集:∁UA={x|x∈U,且x∉A}.
(3)集合的关系:子集,真子集,集合相等.
(4)需要特别注意的运算性质和结论.
①A∪∅=A,A∩∅=∅;
②A∩(∁UA)=∅,A∪(∁UA)=U.
A∩B=A⇔A⊆B,A∪B=A⇔B⊆A
2.四种命题
(1)用p、q表示一个命题的条件和结论,¬p和¬q分别表示条件和结论的否定,那么若原命题:若p则q;则逆命题:若q则p;否命题:若¬p则¬q;逆否命题:若¬q则¬p.
(2)四种命题的真假关系
原命题与其逆否命题同真同真;原命题的逆命题与原命题的否命题同真同假.
3.充要条件
(1)若p⇒q,则p是q成立的充分条件,q是p成立的必要条件.
(2)若p⇒q且q⇒/ p,则p是q的充分不必要条件,q是p的必要不充分条件.
(3)若p⇔q,则p是q的充分必要条件.
4.简单的逻辑联结词“且”、“或”、“非”
用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作“p∧q”;
用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”;
对一个命题p全盘否定,就得到一个新命题,记作“¬p”.
5.全称量词与存在量词
(1)全称命题p:∀x∈M,p(x).
它的否定¬p:∃x0∈M,¬p(x0).
(2)特称命题(存在性命题)p:∃x0∈M,p(x0).
它的否定¬p:∀x∈M,¬p(x).
考点一 集合的概念及运算
例1、【2017课标3,理1】已知集合A=,B=,则AB中元素的个数为
A.3 B.2 C.1 D.0
【答案】B
【变式探究】(1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( )
A.{-1,0} B.{0,1}
C.{-1,0,1} D.{0,1,2}
解析:基本法:化简集合B,利用交集的定义求解.
由题意知B={x|-20”是“x-4>0”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:基本法:判断x2-3x>0⇒x-4>0还是x-4>0⇒x2-3x>0.
注意到x2-3x>0⇔x<0或x>3,x-4>0⇔x>4.由x2-3x>0不能得出x-4>0;反过来,由x-4>0可得出x2-3x>0,因此“x2-3x>0”是“x-4>0”的必要不充分条件.故选B.
答案:B
速解法:利用反例和实数的运算符号寻找推导关系.如x=4时,满足x2-3x>0,但不满足x-4>0,即不充分.
若x-4>0,则x(x-3)>0,即必要.故选B.
答案:B
考点三 命题判定及否定
例3、(1)设命题p:∃n∈N,n2>2n,则綈p为( )
A.∀n∈N,n2>2n B.∃n∈N,n2≤2n
C.∀n∈N,n2≤2n D.∃n∈N,n2=2n
解析:基本法:因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”.故选C.
答案:C
(2)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( )
A.p∧q B.(綈p)∧q
C.p∧(綈q) D.(綈p)∧(綈q)
解析:基本法:当x=0时,有2x=3x,不满足2x<3x,∴p:∀x∈R,2x<3x是假命题.
如图,函数y=x3与y=1-x2有交点,即方程x3=1-x2有解,
∴q:∃x∈R,x3=1-x2是真命题.
∴p∧q为假命题,排除A.
∵綈p为真命题,∴(綈p)∧q是真命题.选B.
速解法:当x=0时,不满足2x<3x,∴p为假,排除A、C.利用图象可知,q为真,排除D,必选B.
答案:B
【变式探究】已知命题p:∃x∈R,2x>3x;命题q:∀x∈,tan x>sin x,则下列是真命题的是( )
A.(綈p)∧q B.(綈p)∨(綈q)
C.p∧(綈q) D.p∨(綈q)
1.【2017课标1,理1】已知集合A={x|x<1},B={x|},则
A. B.
C. D.
【答案】A
【解析】由可得,则,即,所以
,,故选A.
2.【2017课标II,理】设集合,。若,则( )
A. B. C. D.
【答案】C
【解析】由得,即是方程的根,所以, ,故选C.
3.【2017课标3,理1】已知集合A=,B=,则AB中元素的个数为
A.3 B.2 C.1 D.0
【答案】B
4.【2017北京,理1】若集合A={x|–23},则AB=
(A){x|–2