- 1.09 MB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020届高三年级第二次教学质量检测
数学(理)卷
注意事项:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,全卷满分150分。考试时间120分钟。答题前,考生务必将自己的姓名、准考证号等信息填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题 共60分)
一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合M={x|(x+2)(x-5)≤0},N={y|y=2x},则M∩N=
A.(0,5] B.(0,2] C.[2,5] D.[2,+∞)
2.已知向量m=(1,2),n=(4,λ),其中λ∈R。若m⊥n,则
A. B. C.2 D.2
3.设,则
A. B. C. D.
4.曲线y=(x3-3x)·lnx在点(1,0)处的切线方程为
A.2x+y-2=0 B.x+2y-1=0 C.x+y-1=0 D.4x+y-4=0
5.2019年10月18日-27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得133金64银42铜,共239枚奖牌。为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下所示:
现有如下说法:
①在参与调查的500名运动员中任取1人,抽到对主办方表示满意的男性运动员的概率为;
②在犯错误的概率不超过1%的前提下可以认为“是否对主办方表示满意与运动员的性别有关”;
③没有99.9%的把握认为“是否对主办方表示满意与运动员的性别有关”。
则正确命题的个数为
附:,
P()
0.01
0.050
0.010
0.001
k
2.706
3.841
6.635
10.828
A.0 B.1 C.2 D.3
6.记双曲线的左、右焦点分别为F1,F2,离心率为2,点M在C上,点N满足,若,O为坐标原点,则|ON|=
A.8 B.9 C.8或2 D.9或1
7.运行如图所示的程序框图,若输出的S的值为258,则n的值为
A.3 B.4 C.5 D.6
8.记等差数列{an}的前n项和为Sn,若S10=95,a8=17,则
A.an=5n-23 B. C. an =4n-15 D.
9.已知抛物线C:x2=4y的准线为l,记l与y轴交于点M,过点M作直线l'与C相切,切点为N,则以MN为直径的圆的方程为
A.(x+1)2+y2=4或(x-1)2+y2=4 B.(x+1)2+y2=16或(x-1)2+y2=16
C.(x+1)2+y2=2或(x-1)2+y2=2 D.(x+1)2+y2=8或(x-1)2+y2=8
10.函数f(x)=x-4-(x+2)·()x的零点个数为
A.0 B.1 C.2 D.3
11.已知函数f(x)=sin(ωx+φ)(ω>0)的图象关于y轴对称,且f(1+x)+f(1-x)=0,则ω的值可能为
A. B.2π C. D.3
12.体积为216的正方体ABCD-A1B1C1D1中,点M是线段D1C1的中点,点N在线段B1C1上,MN//BD,则正方体ABCD-A1B1C1D1被平面AMN所截得的截面面积为
A. B. C. D.
第II卷(非选择题 共90分)
二、填空题(本大题共4小题,每小题5分,共20分,将答案填写在题中的横线上)
13.若tan(2α+β)=5,tan(α+β)=4,则tanα 。
14.已知实数x,y满足,则z=-x+y的最大值为 。
15.“方锥”,在《九章算术》卷商功中解释为正四棱锥。现有“方锥”S-ABCD,其中AB=4,SA与平面ABCD所成角的正切值为,则此“方锥”的外接球表面积为 。
16.已知首项为3的正项数列{an}满足(an+1+an)(an+1-an)=3(an+1) (an-1),记数列{log2(an2-1)}的前n项和为Sn,则使得Sn>440成立的n的最小值为 。
三、解答题(共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答)
(一)必考题:共60分。
17.(本小题满分12分)
已知△ABC中,角A,B,C所对的边分别为a,b,c,a=,且。
(1)求△ABC外接圆的半径;
(2)若c=3,求△ABC的面积。
18.(本小题满分12分)
四棱锥S-ABCD的底面为正方形,SC=CD=2,SA=2,AC与BD交于E,M,N分别为SD,SA的中点,SC⊥MN。
(l)求证:平面SAC⊥平面SBD;
(2)求直线BD与平面CMN所成角的大小。
19.(本小题满分12分)
随着金融市场的发展,越来越多人选择投资“黄金”作为理财的手段,下面将A市把黄金作为理财产品的投资人的年龄情况统计如下图所示。
(1)求图中a的值;
(2)求把黄金作为理财产品的投资者的年龄的中位数以及平均数;(结果用小数表示,小数点后保留两位有效数字)
(3)以频率估计概率,现从所有投资者中随机抽取4人,记年龄在[20,40)的人数为X,求X的分布列以及数学期望E(X)。
20.(本小题满分12分)
已知椭圆C:的左、右焦点分别为F1,F2,直线l与椭圆C交于P,Q两点,且点M满足。
(1)若点M(1,),求直线l的方程;
(2)若直线l过点F2且不与x轴重合,过点M作垂直于l的直线l'与y轴交于点A(0,t),求实数t的取值范围。
21.(本小题满分12分)
已知函数f(x)=x2ex,其中e=2.718…为自然对数的底数。
(l)求函数f(x)在[-5,-1]上的最值;
(2)若函数g(x)=-alnx,求证:当a∈(0,2e)时,函数g(x)无零点。
(二)请从下面所给的第22、23两题中选定一题作答,如果多答,则按做的第一题记分。
22.(本小题满分10分)[选修4-4:坐标系与参数方程]
已知平面直角坐标系xOy中,曲线C的参数方程为(α为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-)=1。
(1)求曲线C的极坐标方程以及直线l的直角坐标方程;
(2)若直线l':y=与直线l交于点M,与曲线C交于O,N,若A(4,),求△AMN的面积。
23.(本小题满分10分)[选修4-5:不等式选讲]
已知函数f(x)=|x+3|+|2x-5|。
(1)求不等式f(x)>3x的解集;
(2)若关于x的不等式f(x)≥m在R上恒成立,求实数m的取值范围。